Skip to main content
Log in

Microfluidic synthesis of anisotropic particles from Janus drop by in situ photopolymerization

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

This study presents a microfluidic method to generate anisotropic particles from Janus drop with high flexibility to control their shapes by in situ photopolymerization.

Methods

Janus drops are continuously formed as the oil phase breaks up the two laminar flows of a photocurable fluid and a sacrificial template. Our method to generate anisotropic particles includes two routes: In situ polymerization of Janus drop in equilibrium state and evolved drop in nonequilibrium state.

Results

The resulting drop has allowed us to synthesize hemispheres with flat bottom and 3D particles. Also, the formation of the Janus drop and their evolution is theoretically estimated by spreading coefficient.

Conclusions

We anticipate that this novel fabrication approach presented in this work can be applied to produce novel functional material in various applications such as self-assembly, photonics, diagnostics, and drug-delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dendukuri D, Doyle PS. The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater. 2009; 21:4071–4086.

    Article  Google Scholar 

  2. Yang SM, Kim SH, Lim JM, Yi GR. Synthesis and assembly of structured colloidal particles. J Mater Chem. 2008; 18:2177–2190.

    Article  Google Scholar 

  3. Velikov KP, van Dillen T, Polman A, van Blaaderen A. Photonic crystals of shape-anisotropic colloidal particles. Appl Phys Lett. 2002; 81:838–840.

    Article  Google Scholar 

  4. Cederquist KB, Dean SL, Keating CD. Encoded anisotropic particles for multiplexed bioanalysis. Wires Nanomed Nanobi. 2010; 2:578–600.

    Article  Google Scholar 

  5. Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. P Natl Acad Sci USA. 2007; 104:11901–11904.

    Article  Google Scholar 

  6. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. P Natl Acad Sci USA. 2006; 103:4930–4934.

    Article  Google Scholar 

  7. Lewis CL, Choi CH, Lin Y, Lee CS, Yi H. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays. Anal Chem. 2010; 82:5851–5858.

    Article  Google Scholar 

  8. Meiring JE, Schmid MJ, Grayson SM, Rathsack BM, Johnson DM, Kirby R, Kannappan R, Manthiram K, Hsia B, Hogan ZL, Ellington AD, Pishko MV, Willson CG. Hydrogel biosensor array platform indexed by shape. Chem Mater. 2004; 16:5574–5580.

    Article  Google Scholar 

  9. Courbaron A-C, Cayre OJ, Paunov VN. A novel gel deformation technique for fabrication of ellipsoidal and discoidal polymeric microparticles. Chem Commun. 2007; 628–630.

  10. Kim JW, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc. 2006; 128:14374–14377.

    Article  Google Scholar 

  11. Kim JW, Lee D, Shum HC, Weitz DA. Colloid surfactants for emulsion stabilization. Adv Mater. 2008; 20:3239–3243.

    Article  Google Scholar 

  12. Chen CH, Abate AR, Lee DY, Terentjev EM, Weitz DA. Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater. 2009; 21:3201–3204.

    Article  Google Scholar 

  13. Choi CH, Jung JH, Kim DW, Chung YM, Lee CS. Novel onepot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab Chip. 2008; 8:1544–1551.

    Article  Google Scholar 

  14. Li W, Pharn HH, Nie Z, MacDonald B, Guenther A, Kumacheva E. Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach. J Am Chem Soc. 2008; 130:9935–9941.

    Article  Google Scholar 

  15. Wan J, Bick A, Sullivan M, Stone HA. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles. Adv Mater. 2008; 20:3314–3318.

    Article  Google Scholar 

  16. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition. Angew Chem Int Edit. 2005; 44:3799.

    Article  Google Scholar 

  17. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater. 2006; 5: 365–369.

    Article  Google Scholar 

  18. Nisisako T, Torii T. Formation of biphasic janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater. 2007; 19:1489–1493.

    Article  Google Scholar 

  19. Xu X, Asher SA. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J Am Chem Soc. 2004; 126:7940–7945.

    Article  Google Scholar 

  20. Torza S, Mason SG. Three-phase interactions in shear and electrical fields. J Colloid Interf Sci. 1970; 33:67–83.

    Article  Google Scholar 

  21. Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater. 2007; 6:557–62.

    Article  Google Scholar 

  22. Choi CH, Yi H, Hwang S, Weitz DA, Lee CS. Microfluidic fabrication of complex-shaped microfibers by liquid templateaided multiphase microflow. Lab Chip. 2011; 11:1477–1483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, CH., Hwang, S., Jeong, JM. et al. Microfluidic synthesis of anisotropic particles from Janus drop by in situ photopolymerization. Biomed. Eng. Lett. 2, 95–99 (2012). https://doi.org/10.1007/s13534-012-0057-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0057-8

Keywords

Navigation