Skip to main content
Log in

Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, an attempt is made to optimize the effect of various physical and cultural parameters on butanol production by microbial strain Clostridium acetobutylicum MTCC 481 by employing L18 orthogonal array design of experiments. A set of five parameters, viz., temperature, pH, inoculum size, inoculum age, and agitation have been studied. Utilizing a pre-optimized rice straw hydrolysate medium, the clostridial strain produced maximum amount of butanol at optimum conditions of temperature 37 °C, pH 4.0 ± 0.5, inoculum size 5 % (v/v), inoculum age 18 h, and agitation 150 rpm. Among these parameters, pH, temperature, and agitation were found to be the most significant factors affecting solvent production. The optimized physical and cultural parameters were further verified at shake flask and bioreactor scale (2 L and 5 L bioreactor). Experiments using 2 and 5 L bioreactor under the optimized process condition showed nearly complete utilization of soluble sugars with the production of 15.84 g L−1 of total solvents with 12.17 g L−1 of butanol in 2 L bioreactor and 16.91 g L−1 of total solvents with 12.22 g L−1 of butanol in a 5 L of bioreactor, respectively. The experimental data were further validated by fitting it to a kinetic model reported in literature to determine the kinetic parameters of the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABE:

Acetone butanol ethanol

ANOVA:

Analysis of variance

CMM:

Cooked meat medium

DNS:

Dinitrosalicylic acid

DOE:

Design of experiments

μ :

Specific growth rate (per hour)

MS:

Mean of squares

MTCC:

Microbial Type Culture Collection

NCIM:

National Collection of Industrial Micro-organisms

P :

Product concentration (grams per cubic liter)

P 0 :

Initial product concentration (grams per cubic liter)

P max :

Maximum product concentration (grams per cubic liter)

P t :

Kinetic constant

PABA:

p-Aminobenzoic acid

RCA:

Reinforced clostridial agar

RCM:

Reinforced clostridial medium

RMSD:

Root mean square deviation

RMSE:

Root mean square error

RS:

Rice straw

RSH:

Rice straw hydrolysate

SS:

Sum of squares

X :

Biomass concentration (grams per cubic liter)

X m :

Maximum biomass concentration (grams per cubic liter)

X 0 :

Biomass concentration (grams per cubic liter)

Y P/S :

Product yield on the utilized substrate

Y X/S :

Biomass yield on the utilized substrate

References

  1. Cascone R (2008) Biobutanol—a replacement for bioethanol. Chem Eng Prog 104:S4–S9

    Google Scholar 

  2. Song H, Eom MH, Lee S, Lee J, Cho JH, Seung D (2010) Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochem Eng J 53:71–76

    Article  Google Scholar 

  3. Tran HTM, Cheirsilpa B, Hodgsonb B, Umsakulc K (2010) Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 48:260–267

    Article  Google Scholar 

  4. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  Google Scholar 

  5. Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering and economics. Int J Energ Res 39:277–323

    Article  Google Scholar 

  6. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  Google Scholar 

  7. Leal MRLV, Walter AS, Seabra JEA (2012) Sugarcane as an energy source Biomass Conv. Bioref. doi:10.1007/s13399-012-0055-1

  8. Machado de Castro S, Machado de Castro A (2012) Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials. Biomass Conv Bioref 2:87–107

    Article  Google Scholar 

  9. Joensen F, Nielsen PEH, Sørensen MDP (2011) Biomass to green gasoline and power. Biomass Conv Bioref 1:85–90

    Article  Google Scholar 

  10. Surisetty VR, Kozinski J, Dalai AK (2012) Biomass, availability in Canada, and gasification: an overview. Biomass Conv Bioref 2:73–85

    Article  Google Scholar 

  11. Lenihan P, Orozco A, O’Neill O, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 15:395–403

    Article  Google Scholar 

  12. Orozco A, Ahmad M, Rooney D, Walker G (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Proc Safety Environ Protection 85:446–449

    Article  Google Scholar 

  13. Cheng L, Keener TC, Lee JY, Zhou X (2012) Dilute acid pretreatment for cellulosic alcohol production. Biomass Conv Bioref 2:169–177

    Article  Google Scholar 

  14. Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conv Bioref 2:123–132

    Article  Google Scholar 

  15. Chiaramonti D, Rizzo AM, Prussi M, Tedeschi S, Zimbardi F, Braccio G, Viola E, Pardelli PT (2011) 2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment? Biomass Conv Bioref 1:9–15

    Article  Google Scholar 

  16. Thiry M, Cingolani D (2002) Optimizing scale-up fermentation processes. Trends Biotechnol 20:103–105

    Article  Google Scholar 

  17. Stanbury PF, Whitakar A, Hall SJ (1997) Principles of fermentation technology. Aditya Books, New Delhi

    Google Scholar 

  18. Panda BP, Ali M, Javed S (2007) Fermentation process optimization. Res J Microbiol 2:201–208

    Article  Google Scholar 

  19. Elizalde-González MP, García-Díaz LE (2010) Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem Eng J 163:55–61

    Article  Google Scholar 

  20. García IG, Martín AM, Ruiz JMO, Pérez AC (1989) Kinetic study of the production of ethanol with Saccharomyces cerevisiae immobilized on Berl saddles. Chem Eng J 42:B1–B7

    Article  Google Scholar 

  21. Dasu VV, Panda T, Chidambaram M (2003) Determination of significant parameters for improved griseofulvin production in a batch bioreactor by Taguchi’s method. Proc Biochem 38:877–880

    Article  Google Scholar 

  22. Chang MY, Tsai GJ, Houng JY (2006) Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enz Microb Tech 38:407–414

    Article  Google Scholar 

  23. Oskouie SFG, Tabandeh F, Yakhchali B, Eftekhar F (2007) Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. Afr J Biotechnol 6:2559–2564

    Google Scholar 

  24. Wu X, Yang H, Guo L (2010) Effect of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms. Int J Hyd Energ 35:46–51

    Article  Google Scholar 

  25. Sanjari M, Taheri AK, Movahedi MR (2009) An optimization method for radial forging process using ANN and Taguchi method. Int J Adv Manuf Tech 40:776–784

    Article  Google Scholar 

  26. Hedge JE, Hofreiter BT (1962) In Whistler RL, Miller JN (ed.) Carbohydrate chemistry. Academic Press, New York, p 17

    Google Scholar 

  27. Miller GL (1972) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  28. Palaniraj RI, Nagarajan P (2012) Statistical analysis of experimental variables for the production of lactic acid using Lactobacillus casei from waste potato starch by Box-Behnken design. Int J Chem Tech Res 4:1049–1064

    Google Scholar 

  29. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165

    Google Scholar 

  30. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    Google Scholar 

  31. Khamaiseh EI, Kalil MS, Dada O, El-Shawabkeh I, Yusoff WMW (1012) Date fruit as carbon source in RCM-modified medium to produce biobutanol by Clostridium acetobutylicum NCIMB 13357. J Appl Sci 12:1160–1165

    Google Scholar 

  32. Boon-Long S, Laguerie C, Coudere JP (1978) Mass transfer from suspended solids to a liquid in agitated vessels. Chem Eng Sci 33:813

    Article  Google Scholar 

  33. Venil CK, Lakshmanaperumalsamy P (2009) Taguchi experimental design for medium optimization for enhanced production by Bacillus subtilis HB04. eJST 4:1–10

    Google Scholar 

  34. Sirisansaneeyakul S, Luangpipat T, Vanichsriratana W, Srinophakum T, Chen HHH, Chisti Y (2007) Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J Ind Microbiol Biotechnol 34:381–391

    Article  Google Scholar 

  35. Marchal R, Blanchet D, Vandecasteele JP (1985) Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes. Appl Microbiol Biotechnol 23:92–98

    Article  Google Scholar 

  36. Marchal R, Ropars M, Pourqui J, Fayolle E, Vandecasteele JE (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. part 2: conversion into acetone-butanol. Bioresourc Technol 42:205–217

    Article  Google Scholar 

  37. Badr HR, Hamdy MK (1992) Optimization of acetone-butanol production using response surface methodology. Biomass Bioenerg 3:49–55

    Article  Google Scholar 

  38. Syed Q, Nadeem M, Nelofer R (2008) Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Turk J Biochem 33:25–30

    Google Scholar 

  39. Jieun L, Sen K, Kweon D, Park K, Jin Y (2009) Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijrinckii ncimb 8052. J Microbial Biotechnol 19:482–490

    Article  Google Scholar 

  40. Marianoa AP, Costaa CBB, Angelisc DF, de Filhob FM, Atalab DIP, Maciela MRW, Filho RM (2010) Optimisation of a continuous flash fermentation for butanol production using the response surface methodology. Chem Eng Res Design 88:562–571

    Article  Google Scholar 

  41. Liu Z, Li YYF, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501

    Article  Google Scholar 

  42. Moon C, Lee CH, Sang B, Um Y (2011) Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresourc Technol 102:10561–10568

    Article  Google Scholar 

  43. Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresourc Technol 102:9985–9990

    Article  Google Scholar 

  44. Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Proc Biochem 46:604–607

    Article  Google Scholar 

  45. Isar J, Rangaswamy V (2012) Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass Bioenerg 37:9–15

    Article  Google Scholar 

  46. Lin Y, Wang J, Wang X, Sun X (2011) Optimization of butanol production from corn straw hydrolysate by Clostridium acetobutylicum using response surface method. Chinese Sci Bulletin 56:1422–1428

    Article  Google Scholar 

  47. Tran HTM, Cheirsilp B, Umsakul K, Bourtoom T (2011) Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo Int J Sci Technol 5:374–389

    Google Scholar 

  48. Ranjan A, Moholkar VS (2011) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel doi:10.1016/j.fuel.2011.03.030.

  49. Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. J Chem Tech Biotech 55:111–121

    Article  Google Scholar 

  50. Rodrigues L, Moldes A, Teixeira J, Oliveira R (2006) Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochem Eng J 28:109–116

    Article  Google Scholar 

  51. Cheng C, Che P, Chen B, Lee W, Chien LJ, Chang JS (2012) High yield bio-butanol production by solvent-producing bacterial microflora. Bioresourc Technol 113:58–64

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Ministry of New and Renewable Energy for providing NRE fellowship to Ms. Amrita Ranjan. The infrastructural and analytical facilities provided by Centre for Energy and Department of Chemical Engineering, IIT Guwahati, and Spectrophotometric analysis facility provided by CIF, IIT Guwahati, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayanand S. Moholkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjan, A., Mayank, R. & Moholkar, V.S. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Conv. Bioref. 3, 143–155 (2013). https://doi.org/10.1007/s13399-012-0062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-012-0062-2

Keywords

Navigation