Skip to main content
Log in

Subwavelength metal optics and antireflection

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Over the past decade or so, research in metamaterials has opened up new ways in which to control, manipulate, and utilize electromagnetic radiation. One of these new applications is anti-reflection, or unity absorption, primarily achievable through using thin metamaterial films/surfaces (meta-films) incorporating subwavelength features. This review discusses the theoretical and experimental designs for thin metallic-films, with emphasis on absorption in the infrared and visible wavelengths, as well as future endeavors in a host of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cheng, J. Xie, H. Zhang, C. Wang, and N. Zhang, Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum, J. Opt. Soc. Am. B 29 1503 (2012).

    Article  CAS  Google Scholar 

  2. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Unifying approach to left-handed material design, Opt. Lett. 31 3620 (2006).

    Article  Google Scholar 

  3. C. F. Bohren, How can a particle absorb more than the light incident upon it?, Am. J. Phys. 51, (1983).

  4. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 1 (2008).

    Article  Google Scholar 

  5. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 4184 (2000).

    Article  CAS  Google Scholar 

  6. C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mater. 24, OP98 (2012).

    Article  CAS  Google Scholar 

  7. B. Yao and L. Li, Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on, pp. 1089–1092, Nat. Key Lab. of Sci. & Technol. on Antennas & Microwave, Xidian Univ., Xi’an, China (2010).

    Google Scholar 

  8. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration, Opt. Express 19 14260 (2011).

    Article  CAS  Google Scholar 

  9. J. Hao et al., High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett. 96 251104 (2010).

    Article  Google Scholar 

  10. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104 1 (2010).

    Google Scholar 

  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nature Communications 2 517 (2011).

    Article  Google Scholar 

  12. J. Hao, L. Zhou, and M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials, Phys. Rev. B 83 1 (2011).

    Google Scholar 

  13. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Wideband perfect light absorber at midwave infrared using multiplexed metal structures, Opt. Lett. 37 371 (2012).

    Article  Google Scholar 

  14. G. Dolling, C. Enkrich, M. Wegener, and J. Zhou, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials, Optics 30 3198 (2005).

    CAS  Google Scholar 

  15. K. B. Alici and E. Ozbay, Photonic metamaterial absorber designs for infrared solar cell applications, Proc. SPIE 7772 77721B (2010).

    Article  Google Scholar 

  16. C. Lin and R. Chern, Polarization-independent broad-band nearly perfect absorbers in the visible regime, Opt. Express 19 415 (2011).

    Article  CAS  Google Scholar 

  17. C.-W. Cheng et al., Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, Opt. Express 20 10376 (2012).

    Article  CAS  Google Scholar 

  18. C. Hu, Z. Zhao, X. Chen, and X. Luo, Realizing near-perfect absorption at visible frequencies, Opt. Express 17 11039 (2009).

    Article  CAS  Google Scholar 

  19. Y. Ye and Y. Jin, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime, JOSA B 27 498 (2010).

    Article  CAS  Google Scholar 

  20. X. Liu et al., Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107 4 (2011).

    Google Scholar 

  21. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, and I. Khoo, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optics 19 15221 (2011).

    CAS  Google Scholar 

  22. P. R. West et al., Searching for better plasmonic materials, Laser Photonics Rev. 4 795 (2010).

    Article  CAS  Google Scholar 

  23. A. Boltasseva and H. A. Atwater, Materials science. Lowloss plasmonic metamaterials, Science (New York, N.Y.) 331, 290 (2011).

    Article  CAS  Google Scholar 

  24. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, Proceedings of the National Academy of Sciences 109 8834 (2012).

    Article  CAS  Google Scholar 

  25. G. Naik, J. Liu, A. Kildishev, and V. Shalaev, Negative refraction in Al: ZnO/ZnO metamaterial in the near-infrared, http://arxiv.org/abs/1110.3231 (2011).

    Google Scholar 

  26. Q. Zhao, T. Fan, J. Ding, D. Zhang, Q. Guo, and M. K., Super black and ultrathin amorphous carbon lm inspired by anti-reflection architecture in butterfly wing, Carbon 49 877.

  27. P. Clapham, Reduction of Lens Reflexion by the “Moth Eye” Principle, Nature 244 281 (1973).

    Article  Google Scholar 

  28. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, Cylinder light concentrator and absorber: theoretical description, Opt. Express 18 16646 (2010).

    Article  CAS  Google Scholar 

  29. B. Wood, Metamaterials and invisibility, C. R. Phys. 10, 379 (2009).

    Article  CAS  Google Scholar 

  30. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies, Science (New York, N.Y.) 314, 977 (2006).

    Article  CAS  Google Scholar 

  31. A. Polman and H. A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics, Nature Materials 11 174 (2012).

    Article  CAS  Google Scholar 

  32. I. Puscasu and W. L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches, Appl. Phys. Lett. 92 233102 (2008).

    Article  Google Scholar 

  33. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves, Appl. Phys. Lett. 97 051906 (2010).

    Article  Google Scholar 

  34. B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, Dual band switchable metamaterial, Pr. Electromagn. Res. B. 24 121 (2010).

    Article  Google Scholar 

  35. H.-T. Chen et al., Active terahertz metamaterial devices, Nature 444 597 (2006).

    Article  CAS  Google Scholar 

  36. N. P. Johnson, R. M. De La Rue, and S. A. De La Rue, Metamaterials at optical frequencies: fabrication and measurements, Appl. Metamat. 30 1 (2009).

    Google Scholar 

  37. C. Enkrich et al., Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, Adv. Mater. 17 2547 (2005).

    Article  CAS  Google Scholar 

  38. N. Liu et al., Three-dimensional photonic metamaterials at optical frequencies, Nature Materials 7 31 (2008).

    Article  CAS  Google Scholar 

  39. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, Nano Lett. 10 2342 (2010).

    Article  CAS  Google Scholar 

  40. B. Kang et al., Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure, Opt. Express 18 16492 (2010).

    Article  CAS  Google Scholar 

  41. J. Pendry and D. Schurig, Controlling electromagnetic fields, Science 312 1780 (2006).

    Article  CAS  Google Scholar 

  42. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett. 100 063903 (2008).

    Article  Google Scholar 

  43. S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E 74 1 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Isenstadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenstadt, A., Xu, J. Subwavelength metal optics and antireflection. Electron. Mater. Lett. 9, 125–132 (2013). https://doi.org/10.1007/s13391-013-0001-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-0001-9

Keywords

Navigation