Skip to main content
Log in

Nanoscale interface control for high-performance Li-ion batteries

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstact

Li-ion batteries have attracted great interest for the past decades, and now are one of the most important power sources for portable electronic devices, store electricity, hybrid electric vehicles (HEV), etc. However, Li-ion-battery technologies still have several problems related to the electrochemical performance (cycle-life performance and power density) or safety of the active electrode materials. There have been numerous breakthrough challenges to overcome these problems by extensive research. Among the various methods to improve the battery’s electrochemical properties, nanoscale coating on active materials and control of the nanostructured morphology were proven as effective approaches over the last decade. In this review paper, enhanced electrochemical properties of the cathode and anode materials via nanoscale interface modification and the respective enhancing mechanisms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tollefson, Car Industry: Charging Up the Future, Nature 456, 436 (2008).

    Article  CAS  Google Scholar 

  2. J. N. Reimers and J. R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2, J. Electrochem. Soc. 139, 2091 (1992).

    Article  CAS  Google Scholar 

  3. T. Ohzuku and A. Ueda, Solid-State Redox Reactions of LiCoO2 for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc. 141, 2972 (1994).

    Article  CAS  Google Scholar 

  4. H. Wang, Y. Jang, B. Huang, D. R. Sadoway, and Y. Chiang, TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries, J. Electrochem. Soc. 146, 473 (1999).

    Article  CAS  Google Scholar 

  5. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Cobalt Dissolution in LiCoO2-Based Non-Aqueous Rechargeable Batteries, Solid State Ionics 83, 167 (1996).

    Article  CAS  Google Scholar 

  6. S. Venkatrman and A. Manthiram, Structural and Chemical Characterization of Layered Li1−xNi1−yMnyO2-δ (y = 0.25 and 0.5, and 0 ≤ (1 − x) ≤ 1) Oxides, Chem. Mater. 15, 5003 (2003).

    Article  CAS  Google Scholar 

  7. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H. Kim, and M. Schmidt, On the Capacity Fading of LiCoO2 Intercalation Electrodes: The Effect of Cycling, Storage, Temperature, and Surface Film Forming Additives, Electrochim. Acta 47, 4291 (2002).

    Article  CAS  Google Scholar 

  8. T. Brousse, R. Retoux, U. Herterich, and D. M. Schleich, Thin-Film Crystalline SnO2-Lithium Electrodes, J. Electrochem. Soc. 145, 1 (1998).

    Article  CAS  Google Scholar 

  9. S. Nam, S. Kim, S. Wi, H. Choi, S. Byun, S.-M. Choi, S.-I. Yoo, K. T. Lee, and B. Park, The Role of Carbon Incorporation in SnO2 Nanoparticles for Li Rechargeable Batteries, J. Power Sources in press (2012). [DOI:10.1016/j.jpowsour.2012.03.061]

  10. Y. Oh, D. Ahn, S. Nam, and B. Park, The Effect of Al2O3-Coating Coverage on the Electrochemical Properties in LiCoO2 Thin Films, J. Solid State Electrochem. 14, 1235 (2010).

    Article  CAS  Google Scholar 

  11. Y. Oh, D. Ahn, S. Nam, C. Kim, J.-G. Lee, and B. Park, The Enhancement of Cycle-Life Performance in LiCoO2 Thin Film by Partial Al2O3 Coating, Electron. Mater. Lett. 4, 103 (2008).

    CAS  Google Scholar 

  12. J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, Comparison of Al2O3- and AlPO4-Coated LiCoO2 Cathode Materials for a Li-Ion Cell, J. Power Sources 146, 58 (2005).

    Article  CAS  Google Scholar 

  13. H.-J. Kweon, J. Park, J. Seo, G. Kim, B. Jung, and H. S. Lim, Effects of Metal Oxide Coatings on the Thermal Stability and Electrical Performance of LiCoCO2 in a Li-Ion Cell, J. Power Sources 126, 156 (2004).

    Article  CAS  Google Scholar 

  14. Y. J. Kim, H. Kim, B. Kim, D. Ahn, J.-G. Lee, T.-J. Kim, D. Son, J. Cho, Y.-W. Kim, and B. Park, Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating, Chem. Mater. 15, 1505 (2003).

    Article  CAS  Google Scholar 

  15. Y. J. Kim, J. Cho, T.-J. Kim, and B. Park, Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-Oxide Coatings, J. Electrochem. Soc. 150, A1723 (2003).

    Article  CAS  Google Scholar 

  16. Y. J. Kim, T.-J. Kim, J. W. Shin, B. Park, and J. Cho, The Effect of Al2O3 Coating on the Cycle-Life Performance in Thin-Film LiCoO2 Cathodes, J. Electrochem. Soc. 149, A1337 (2002).

    Article  CAS  Google Scholar 

  17. Z. Wang, L. Liu, L. Chen, and X. Huang, Structural and Electrochemical Characterizations of Surface-Modified LiCoO2 Cathode Materials for Li-Ion Batteries, Solid State Ionics 148, 335 (2002).

    Article  CAS  Google Scholar 

  18. J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Effect of Al2O3-Coated o-LiMnO2 Cathodes Prepared at Various Temperatures on the 55°C Cycling Behavior, J. Electrochem. Soc. 149, A127 (2002).

    Article  CAS  Google Scholar 

  19. J. Cho, Y. J. Kim, and B. Park, LiCoO2 Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase, J. Electrochem. Soc. 148, A1110 (2001).

    Article  CAS  Google Scholar 

  20. S.-W. Lee, K.-S. Kim, H.-S. Moon, H.-J. Kim, B.-W. Cho, W.-I. Cho, J.-B. Ju, and J.-W. Park, Electrochemical Characteristics of Al2O3-Coated Lithium Manganese Spinel as a Cathode Material for a Lithium Secondary Battery, J. Power Sources 126, 150 (2004).

    Article  CAS  Google Scholar 

  21. J. Cho, T.-J. Kim, and B. Park, The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55°C in Orthorhombic LiMnO2 Cathode Materials, J. Electrochem. Soc. 149, A288 (2002).

    Article  CAS  Google Scholar 

  22. J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Enhanced Structural Stability of o-LiMnO2 by Sol-Gel Coating of Al2O3, Chem. Mater. 13, 18 (2001).

    Article  CAS  Google Scholar 

  23. M. M. Thackeray, C. S. Johnson, J. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, and M. A. Anderson, ZrO2- and Li2ZrO3-Stabilized Spinel and Layered Electrodes for Lithium Batteries, Electrochem. Comm. 5, 752 (2003).

    Article  CAS  Google Scholar 

  24. J. Cho, T.-J. Kim, Y. J. Kim, and B. Park, Complete Blocking of Mn3+ Ion Dissolution from LiMn2O4 Spinel Intercalation Compound by CO3O4 Coating, Chem. Commun. 1074 (2001).

  25. J. Cho, T.-J. Kim, Y. J. Kim, and B. Park, High-Performance ZrO2-Coated LiNiO2 Cathode Material, Electrochem. Solid-State Lett. 4, A159 (2001).

    Article  CAS  Google Scholar 

  26. S. Myung, K. Izumi, S. Komaba, Y. Sun, H. Yashiro, and N. Kumagai, Role of Alumina Coating on LiNiCoMnO Particles as Positive Electrode Material for Lithium-Ion Batteries, Chem. Mater. 17, 3695 (2005).

    Article  CAS  Google Scholar 

  27. J. Cho, Y. J. Kim, and B. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Chem. Mater. 12, 3788 (2000).

    Article  CAS  Google Scholar 

  28. S. Myung, K. Izumi, S. Komaba, H. Yashiro, H. J. Bang, Y. Sun, and N. Kumagai, Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as Positive Electrode Materials for Lithium-Ion Secondary Batteries, J. Phys. Chem. C 111, 4061 (2007).

    Article  CAS  Google Scholar 

  29. J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell, Angew. Chem. Int. Ed. 40, 3367 (2001).

    Article  CAS  Google Scholar 

  30. Y. J. Kim, E.-K. Lee, H. Kim, J. Cho, Y. W. Cho, B. Park, S. M. Oh, and J. K. Yoon, Changes in the Lattice Constants of Thin-Film LiCoO2 Cathodes at the 4.2 V Charged State, J. Electrochem. Soc. 151, A1063 (2004).

    Article  CAS  Google Scholar 

  31. B. Kim, C. Kim, D. A., T. M., J. Ahn, Y. Park, and B. Park, Nanostructural Effect of AlPO4-Nanoparticle Coating on the Cycle-Life Performance in LiCoO2 Thin Films, Electrochem. Solid-State Lett. 10, A32 (2007).

    Article  CAS  Google Scholar 

  32. D. Ahn, C. Kim, J.-G. Lee, B. Kim, Y. Park, and B. Park, Electrochemical Stability in Cerium-Phosphate-Coated LiCoO2 Thin Films, J. Mater. Res. 22, 688 (2007).

    Article  CAS  Google Scholar 

  33. J. Kim, M. Noh, J. Cho, H. Kim, and K.-B. Kim, Controlled Nanoparticle Metal Phosphates (Metal = Al, Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials, J. Electrochem. Soc. 152, A1142 (2005).

    Article  CAS  Google Scholar 

  34. J.-G. Lee, T.-G. Kim, and B. Park, Metal-Phosphate Coating on LiCoO2 Cathodes with High Cutoff Voltages, Mater. Res. Bull. 42, 1201 (2007).

    Article  CAS  Google Scholar 

  35. D. Ahn, J.-G. Lee, J. S. Lee, J. Kim, J. Cho, and B. Park, Suppression of Structural Degradation of LiNi0.9Co0.1O2 Cathode at 90°C by AlPO4-Nanoparticle Coating, Curr. Appl. Phys. 7, 172 (2007).

    Article  Google Scholar 

  36. G.-R. Hu, X.-R. Deng, Z.-D. Peng, and K. Du, Comparison of AlPO4- and CO3(PO4)2-Coated LiNi0.8Co0.2O2 Cathode Materials for Li-Ion Battery, Electrochim. Acta 53, 2567 (2008).

    Article  CAS  Google Scholar 

  37. B. Kim, C. Kim, T.-G. Kim, D. Ahn, and B. Park, The Effect of AlPO4-Coating Layer on the Electrochemical Properties in LiCoO2 Thin Films, J. Electrochem. Soc. 153, A1773 (2006).

    Article  CAS  Google Scholar 

  38. J. Cho, B. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, Annealing-Temperature Effect on Various Cutoff-Voltage Electrochemical Performances in AlPO4-Nanoparticle-Coated LiCoO2, J. Electrochem. Soc. 152, A32 (2005).

    Article  CAS  Google Scholar 

  39. S. Verdier, L. El Ouatani, R. Dedryvre, F. Bonhomme, P. Biensan, and D. Gonbeau, XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li-Ion Batteries, J. Electrochem. Soc. 154, A1088 (2007).

    Article  CAS  Google Scholar 

  40. J. Cho, J.-G. Lee, B. Kim, T.-G. Kim, J. Kim, and B. Park, Control of AlPO4-Nanoparticle Coating on LiCoO2 by Using Water or Ethanol, Electrochim. Acta 50, 4182 (2005).

    Article  CAS  Google Scholar 

  41. A. T. Appapillai, A. N. Mansour, J. Cho, and Y. Shao-Horn, Microstructure of LiCoO2 with and without AlPO4 Nanoparticle Coating: Combined STEM and XPS Studies, Chem. Mater. 19, 5748 (2007).

    Article  CAS  Google Scholar 

  42. T.-J. Kim, D. Son, J. Cho, B. Park, and H. Yang, Enhanced Electrochemical Properties of SnO2 Anode by AlPO4 Coating, Electrochim. Acta 49, 4405 (2004).

    CAS  Google Scholar 

  43. K. S. Tan, M. V. Reddy, G. V. S. Rao, and B. V. R. Chowdari, Effect of AlPO4-Coating on Cathodic Behaviour of Li(Ni0.8Co0.2)O2, J. Power Sources 141, 129 (2005).

    Article  CAS  Google Scholar 

  44. J.-G. Lee, B. Kim, J. Cho, Y.-W. Kim, and B. Park, Effect of AlPO4-Nanoparticle Coating Concentration on the High-Cutoff-Voltage Electrochemical Performances in LiCoO2, J. Electrochem. Soc. 151, A801 (2004).

    Article  CAS  Google Scholar 

  45. J. Cho, T.-J. Kim, J. Kim, M. Noh, and B. Park, Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials for a Li-Ion Cell, J. Electrochem. Soc. 151, A1899 (2004).

    Article  CAS  Google Scholar 

  46. J. Cho, H. Kim, and B. Park, Comparison of Overcharge Behavior of AlPO4-Coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 Cathode Materials in Li-Ion Cells, J. Electrochem. Soc. 151, A1707 (2004).

    Article  CAS  Google Scholar 

  47. G. Li, Z. Yang, and W. Yang, Effect of FePO4 Coating on Electrochemical and Safety Performance of LiCoO2 as Cathode Material for Li-Ion Batteries, J. Power Sources 183, 741 (2008).

    Article  CAS  Google Scholar 

  48. J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park, A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles, Angew. Chem. Int. Ed. 42, 1618 (2003).

    Article  CAS  Google Scholar 

  49. J. Cho, J.-G. Lee, B. Kim, and B. Park, Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material, Chem. Mater. 15, 3190 (2003).

    Article  CAS  Google Scholar 

  50. T. Moon, C. Kim, S.-T. Hwang, and B. Park, Electrochemical Properties of Disordered-Carbon-Coated SnO2 Nanoparticles for Li Rechargeable Batteries, Electrochem. Solid-State Lett. 9, A408 (2006).

    Article  CAS  Google Scholar 

  51. C. H. Mi, X. B. Zhao, G. S. Cao, and J. P. Tu, In-situ Synthesis and Properties of Carbon-Coated LiFePO4 as Li-Ion Battery Cathodes, J. Electrochem. Soc. 152, A483 (2005).

    Article  CAS  Google Scholar 

  52. J. Kim, B. Kim, J.-G. Lee, J. Cho, and B. Park, Direct Carbon-Black Coating on LiCoO2 Cathode Using Surfactant for High-Density Li-Ion Cell, J. Power Sources 139, 289 (2005).

    Article  CAS  Google Scholar 

  53. H. C. Shin, W. I. Cho, and H. Jang, Electrochemical Properties of the Carbon-Coated LiFePO4 as a Cathode Material for Lithium-Ion Secondary Batteries, J. Power Sources 159, 1383 (2006).

    Article  CAS  Google Scholar 

  54. J. Liu, Y. Li, R. Ding, J. Jiang, Y. Hu, X. Ji, Q. Chi, and X. Huang, Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability, J. Phys. Chem. C 113, 5336 (2009).

    Article  CAS  Google Scholar 

  55. K. Amine, J. Liu, and I. Belharouak, High-Temperature Storage and Cycling of C-LiFePO4/graphite Li-Ion Cells, Electrochem. Commun. 7, 669 (2005).

    Article  CAS  Google Scholar 

  56. N. Sharma, K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Z. L. Dong, and T. J. White, Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries, Chem. Mater. 16, 504 (2004).

    Article  CAS  Google Scholar 

  57. D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, and J. O. Thomas, A Comparative XPS Surface Study of Li2FeSiO4/C Cycled with LiTFSI- and LiPF6-Based Electrolytes, J. Mater. Chem. 19, 82 (2009).

    Article  CAS  Google Scholar 

  58. P. Gao, J. Fu, J. Yang, R. Lv, J. Wang, Y. Nuli, and X. Tang, Microporous Carbon Coated Silicon Core/Shell Nanocomposite via in situ Polymerization for Advanced Li-Ion Battery Anode Material, Phys. Chem. Chem. Phys. 11, 11101 (2009).

    Article  CAS  Google Scholar 

  59. Y. Li and J. Li, Carbon-Coated Macroporous Sn2P2O7 as Anode Materials for Li-Ion Battery, J. Phys. Chem. C 112, 14216 (2008).

    Article  CAS  Google Scholar 

  60. N. Sharma, G. V. Subba Rao, and B. V. R. Chowdari, Electrochemical Properties of Carbon-Coated CaWO4 versus Li, Electrochim. Acta 50, 5305 (2005).

    Article  CAS  Google Scholar 

  61. Y. Wu, Z. Wen, and J. Li, Hierarchical Carbon-Coated LiFePO4 Nanoplate Microspheres with High Electrochemical Performance for Li-Ion Batteries, Adv. Mater. 23, 1126 (2011).

    Article  CAS  Google Scholar 

  62. B. L. Cushing and J. B. Goodenough, Influence of Carbon Coating on the Performance of a LiMn0.5Ni0.5O2 Cathode, Solid State Sci. 4, 1487 (2002).

    Article  CAS  Google Scholar 

  63. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, and Z. Ogumi, Improvement of Natural Graphite as a Lithium-Ion Battery Anode Material, from Raw Flake to Carbon-Coated Sphere, J. Mater. Chem. 14, 1754 (2004).

    Article  CAS  Google Scholar 

  64. H.-G. Jung, S.-T. Myung, C. S. Yoon, S.-B. Son, K. H. Oh, K. Amine, B. Scrosati, and Y.-K. Sun, Microscale Spherical Carbon-Coated Li4Ti5O12 as Ultra High Power Anode Material for Lithium Batteries, Energy Environ. Sci. 4, 1345 (2011).

    Article  CAS  Google Scholar 

  65. H. Li and H. Zhou, Enhancing the Performances of Li-Ion Batteries by Carbon-Coating: Present and Future, Chem. Commun. 48, 1201 (2012).

    Article  CAS  Google Scholar 

  66. S. Yang, X. Feng, S. Ivanovici, and K. Müllen, Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage, Angew. Chem. Int. Ed. 49, 8408 (2010).

    Article  CAS  Google Scholar 

  67. J. S. Chen, Z. Wang, X. C. Dong, P. Chen, and X. W. (David) Lou, Graphene-Wrapped TiO2 Hollow Structures with Enhanced Lithium Storage Capabilities, Nanoscale 3, 2158 (2011).

    Article  CAS  Google Scholar 

  68. D. Chen, G. Ji, Y. Ma, J. Y. Lee, and J. Lu, Graphene-Encapsulated Hollow Fe3O4 Nanoparticle Aggregates as a High-Performance Anode Material for Lithium-Ion Batter ies, Appl. Mater. Interfaces 3, 3078 (2011).

    Article  CAS  Google Scholar 

  69. W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, C. M. Li, and T. Yu, A General Strategy toward Graphene@Metal Oxide Core-Shell Nanostructures for High-Performance Lithium Storage, Energy Environ. Sci. 4, 4954 (2011).

    Article  CAS  Google Scholar 

  70. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. (Max) Lu, and H.-M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium-Ion Batteries, Chem. Mater. 22, 5306 (2010).

    Article  CAS  Google Scholar 

  71. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability, Nano Lett. 11, 2644 (2011).

    Article  CAS  Google Scholar 

  72. N. Zhu, W. Liu, M. Xue, Z. Xie, D. Zhao, M. Zhang, J. Chen, and T. Cao, Graphene as a Conductive Additive to Enhance the High-Rate Capabilities of Electrospun Li4Ti5O12 for Lithium-Ion Batteries, Electrochim. Acta 55, 5813 (2010).

    Article  CAS  Google Scholar 

  73. H. Wang, D. He, Y. Wang, H. Wu, and J. Wang, SnO2/Graphene Nanocomposite as an Enhanced Anode Material for Lithium-Ion Batteries, Adv. Mater. Res. 465, 108 (2012).

    Article  Google Scholar 

  74. J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, Silicon Nanoparticles-Graphene Paper Composites for Li-Ion Battery Anodes, Chem. Commun. 46, 2025 (2010).

    Article  CAS  Google Scholar 

  75. Y. Li, X. Lv, J. Lu, and J. Li, Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability, J. Phys. Chem. C 114, 21770 (2010).

    Article  CAS  Google Scholar 

  76. X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-Based Composites, Chem. Soc. Rev. 41, 666 (2012).

    Article  CAS  Google Scholar 

  77. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, and R. S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite as a High-Performance Anode Material for Lithium-Ion Batteries, ACS Nano 5, 3333 (2011).

    Article  CAS  Google Scholar 

  78. Y. Zou, J. Kan, and Y. Wang, Fe2O3-Graphene Rice-on-Sheet Nanocomposite for High and Fast Lithium-Ion Storage, J. Phys. Chem. C 115, 20747 (2011).

    Article  CAS  Google Scholar 

  79. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, and R. S. Ruoff, Reduced Graphene Oxide/Tin Oxide Composite as an Enhanced Anode Material for Lithium-Ion Batteries Prepared by Homogenous Coprecipitation, J. Power Sources 196, 6473 (2011).

    Article  CAS  Google Scholar 

  80. Y.-K. Sun, J.-M. Han, S.-T. Myung, S.-W. Lee, and K. Amine, Significant Improvement of High Voltage Cycling Behavior AlF3-Coated LiCoO2 Cathode, Electrochem. Commun. 8, 821 (2006).

    Article  CAS  Google Scholar 

  81. Z. Yang, W. Yang, D. Evans, G. Li, and Y. Zhao, Enhanced Overcharge Behavior and Thermal Stability of Commercial LiCoO2 by Coating with a Novel Material, Electrochem. Commun. 10, 1136 (2008).

    Article  CAS  Google Scholar 

  82. B.-C. Park, H.-B. Kim, S.-T. Myung, K. Amine, I. Belharouak, S.-M. Lee, and Y.-K. Sun, Improvement of Structural and Electrochemical Properties of AlF3-Coated Li[Ni1/3Co1/3Mn1/3]O2 Cathode Materials on High Voltage Region, J. Power Sources 178, 826 (2008).

    Article  CAS  Google Scholar 

  83. K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, and Y.-K. Sun, Dual Functioned BiOF-Coated Li[Li0.1Al0.05Mn1.85]O4 for Lithium Batteries, J. Mater. Chem. 19, 1995 (2009).

    Article  CAS  Google Scholar 

  84. H.-B. Kim, B.-C. Park, S.-T. Myung, K. Amine, J. Prakash, and Y.-K. Sun, Electrochemical and Thermal Characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 Cathode in Lithium-Ion Cells, J. Power Sources 179, 347 (2008).

    Article  CAS  Google Scholar 

  85. H. Wang, W.-D. Zhang, L.-Y. Zhu, and M.-C. Chen, Effect of LiFePO4 Coating on Electrochemical Performance of LiCoO2 at High Temperature, Solid State Ionics, 178, 131 (2007).

    Article  CAS  Google Scholar 

  86. Y.-K. Sun, S.-W. Cho, S.-T. Myung, K. Amine, and J. Prakash, Effect of AlF3 Coating Amount on High Voltage Cycling Performance of LiCoO2, Electrochim. Acta, 53, 1013 (2007).

    Article  CAS  Google Scholar 

  87. K. Zaghib, M. Trudeau, A. Guerfi, J. Trottier, A. Mauger, R. Veillette, and C. M. Julien, New Advanced Cathode Material: LiMnPO4 Encapsulated with LiFePO4, J. Power Sources 204, 177 (2012).

    Article  CAS  Google Scholar 

  88. F. Nobili, M. Mancini, P. E. Stallworth, F. Crocec, S. G. Greenbaum, and R. Marassi, Tin-Coated Graphite Electrodes as Composite Anodes for Li-Ion Batteries: Effects of Tin Coatings Thickness Toward Intercalation Behavior, J. Power Sources 198, 243 (2012).

    Article  CAS  Google Scholar 

  89. J. Li, L. Wang, Q. Zhang, and X. He, Electrochemical Performance of SrF2-Coated LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Li-Ion Batteries, J. Power Sources 190, 149 (2009).

    Article  CAS  Google Scholar 

  90. C. Sisbandini, D. Brandell, T. Gustafsson, and J. O. Thomas, Effect of Short-Chain Amine Coatings on the Performance of LiFePO4 Li-Ion Battery Cathodes, Electrochem. Solid-State Lett. 12, A99 (2009).

    Article  CAS  Google Scholar 

  91. H. Bryngelsson, J. Eskhult, L. Nyholm, M. Herranen, O. Alm, and K. Edström, Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries, Chem. Mater. 19, 1170 (2007).

    Article  CAS  Google Scholar 

  92. Y.-J. Kang, J.-H. Kim, S.-W. Lee, and Y.-K. Sun, The Effect of Al(OH)3 Coating on the Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material for Lithium Secondary Battery, Electrochim. Acta 50, 4784 (2005).

    Article  CAS  Google Scholar 

  93. Y.-H. Jin, S.-H. Lee, H.-W. Shim, K. H. Ko, and D.-W. Kim, Tailoring High-Surface-Area Nanocrystalline TiO2 Polymorphs for High-power Li-Ion Battery Electrodes, Electrochim. Acta 55, 7315 (2010).

    Article  CAS  Google Scholar 

  94. T.-J. Kim, C. Kim, D. Son, M. Choi, and B. Park, Novel SnS2-Nanosheet Anodes for Lithium-Ion Batteries, J. Power Sources 167, 529 (2007).

    Article  CAS  Google Scholar 

  95. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Lett. 11, 4462 (2011).

    Article  CAS  Google Scholar 

  96. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery, Chem. Mater. 17, 3297 (2005).

    Article  CAS  Google Scholar 

  97. X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, L. B. Chen, and T. H. Wang, One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium-Ion Batteries, J. Phys. Chem. C 114, 8084 (2010).

    Article  CAS  Google Scholar 

  98. T. Moon, C. Kim, and B. Park, Electrochemical Performance of Amorphous-Silicon Thin Films for Lithium Rechargeable Batteries, J. Power Sources 155, 391 (2006).

    Article  CAS  Google Scholar 

  99. M.-S. Kim, B. Fang, J. H. Kim, D. Yang, Y. K. Kim, T.-S. Bae, and J.-S. Yu, Ultra-High Li Storage Capacity Achieved by Hollow Carbon Capsules with Hierarchical Nanoarchitecture, J. Mater. Chem. 21, 19362 (2011).

    Article  CAS  Google Scholar 

  100. C. Tang, Y. Bando, Y. Huang, C. Zhi, D. Golberg, X. Xu, J. Zhao, and Y. Li, Synthesis of Nanoporous Spheres of Cubic Gallium Oxynitride and Their Lithium Ion Intercalation Properties, Nanotechnology 21, 115705 (2011).

    Article  CAS  Google Scholar 

  101. J.-W. Seo, J.-T. Jang, S.-W. Park, C. Kim, B. Park, and J. Cheon, Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries, Adv. Mater. 20, 4269 (2008).

    Article  CAS  Google Scholar 

  102. J.-T. Jang, S. Jung, J.-W. Seo, M.-C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, Ultrathin Zirconium Disulfide Nanodiscs, J. Am. Chem. Soc. 133, 7636 (2011).

    Article  CAS  Google Scholar 

  103. J. Chen, L. Yang, S. Fang, and Y. Tang, Synthesis of Sawtooth-Like Li4Ti5O12 Nanosheets as Anode Materials for Li-Ion Batteries, Electrochim. Acta 55, 6596 (2010).

    Article  CAS  Google Scholar 

  104. S. Yang, X. Feng, and K. Müllen, Sandwich-Like Graphene-Based Titania Nanosheets with High Surface Area for Fast Lithium Storage, Adv. Mater. 23, 3575 (2011).

    Article  CAS  Google Scholar 

  105. D. Son, E. Kim, T.-G. Kim, M. G. Kim, J. Cho, and B. Park, Nanoparticle Iron-Phosphate Anode Material for Li-Ion Battery, Appl. Phys. Lett. 85, 5875 (2004).

    Article  CAS  Google Scholar 

  106. L.-S. Zhang, L.-Y. Jiang, H.-J. Yan, W. D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, and L.-J. Wan, Mono Dispersed SnO2 Nanoparticles on Both Sides of Single Layer Graphene Sheets as Anode Materials in Li-Ion Batteries, J. Mater. Chem. 20, 5462 (2010).

    Article  CAS  Google Scholar 

  107. H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering Empty Space Between Si Nanoparticles for Lithium-Ion Battery Anodes, Nano Lett. 12, 904 (2012).

    Article  CAS  Google Scholar 

  108. J.-G. Lee, D. Son, C. Kim, and B. Park, Electrochemical Properties of Tin Phosphates with Various Mesopore Ratios, J. Power Sources 172, 908 (2007).

    Article  CAS  Google Scholar 

  109. H. Wang, Y. Wu, Y. Bai, W. Zhou, Y. An, J. Li, and L. Guo, The Self-Assembly of Porous Microspheres of Tin Dioxide Octahedral Nanoparticles for High Performance Lithium-Ion Battery Anode Materials, J. Mater. Chem. 21, 10189 (2011).

    Article  CAS  Google Scholar 

  110. E. Kim, D. Son, T.-G. Kim, J. Cho, B. Park, K. S. Ryu, and S. H. Chang, A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-Ion Batteries, Angew. Chem. Int. Ed. 43, 5987 (2004).

    Article  CAS  Google Scholar 

  111. Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P. A. Van Aken, and J. Maier, Encapsulation of Sn@Carbon Nanoparticles in Bamboo-Like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries, Angew. Chem. Int. Ed. 48, 6485 (2009).

    Article  CAS  Google Scholar 

  112. J.-W. Seo, Y.-W. Jun, S.-W. Park, H. Nah, T. Moon, B. Park, J.-G. Kim, Y. J. Kim, and J. Cheon, Two-Dimensional Nanosheet Crystals, Angew. Chem. Int. Ed. 46, 8828 (2007).

    Article  CAS  Google Scholar 

  113. H. Kim and J. Cho, Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material, Chem. Mater. 20, 1679 (2008).

    Article  CAS  Google Scholar 

  114. H. Zhao, Z. Zheng, K. W. Wong, S. Wang, B. Huang, and D. Li, Fabrication and Electrochemical Performance of Nickel Ferrite Nanoparticles as Anode Material in Lithium-Ion Batteries, Electrochem. Commun. 9, 2606 (2007).

    Article  CAS  Google Scholar 

  115. C. K. Chan, X. F. Zhang, and Y. Cui, High Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett. 8, 307 (2008).

    Article  CAS  Google Scholar 

  116. Y.-D. Ko, J.-G. Kang, J.-G. Park, S. Lee, and D.-W. Kim, Self-Supported SnO2 Nanowire Electrodes for High-Power Lithium-Ion Batteries, Nanotechnology 20, 455701 (2009).

    Article  CAS  Google Scholar 

  117. Y. Li, B. Tan, and Y. Wu, Mesoporous CO3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability, Nano Lett. 8, 265 (2008).

    Article  CAS  Google Scholar 

  118. H. Kim, B. Park, H.-J. Sohn, and T. Kang, Electrochemical Characteristics of Mg-Ni Alloys as Anode Materials for Secondary Li Batteries, J. Power Sources 90, 59 (2000).

    Article  CAS  Google Scholar 

  119. A. M. Glass and K. Nassau, Lithium-Ion Conduction in Rapidly Quenched Li2O-Al2O3, Li2O-Ga2O3, and Li2OBi2O3 Glasses, J. Appl. Phys. 51, 3756 (1980).

    Article  CAS  Google Scholar 

  120. B. Kim, J.-G. Lee, M. Choi, J. Cho, and B. Park, Correlation between Local Strain and Cycle-Life Performance of AlPO4-Coated LiCoO2 Cathodes, J. Power Sources 126, 190 (2004).

    Article  CAS  Google Scholar 

  121. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature 407, 496 (2000).

    Article  CAS  Google Scholar 

  122. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  123. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc. 130, 5856 (2008).

    Article  CAS  Google Scholar 

  124. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-Based Ultracapacitors, Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  125. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  126. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  127. M. Behm and J. T. S. Irvine, Influence of Structure and Composition upon Performance of Tin Phosphate Based Negative Electrodes for Lithium Batteries, Electrochim. Acta 47, 1727 (2002).

    Article  CAS  Google Scholar 

  128. M.-S Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, and H.-K. Liu, Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed. 46, 750 (2007).

    Article  CAS  Google Scholar 

  129. T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park, Hydroxyl-Quenching Effects on the Photoluminescence Properties of SnO2:Eu3+ Nanoparticles, J. Phys. Chem. C 111, 4164 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Oh or Byungwoo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, Y., Nam, S., Wi, S. et al. Nanoscale interface control for high-performance Li-ion batteries. Electron. Mater. Lett. 8, 91–105 (2012). https://doi.org/10.1007/s13391-012-2058-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2058-2

Keywords

Navigation