Skip to main content

Advertisement

Log in

Genetic and functional heterogeneity of CNS-derived tat alleles from patients with HIV-associated dementia

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 (HIV-1) demonstrates a high degree of viral diversity which has an impact on viral fitness. Genetic compartmentalization of HIV-1 proteins between central nervous system (CNS) and lymphoid tissues is well established and reflects altered requirements for HIV-1 replication in macrophages/microglia, brain-specific immune selection pressures and possibly the timing of virus invasion of the CNS. Tat-encoding mRNA has been detected in the CNS of HIV-1 infected individuals and its neurotoxic effects in the CNS are well documented. However, while CNS-derived tat sequences have demonstrated significant diversity, the effect of this molecular diversity on transcriptional regulation and its impact on the pathogenesis of HIV-associated dementia (HAD) remains unclear. In this study, we cloned and characterised 44 unique tat alleles from brain, cerebral spinal fluid, spinal cord and blood/lymphoid tissue-derived HIV-1 isolates from five subjects with HAD. While phylogenetic analyses revealed tissue-specific compartmentalization of Tat variants for two patients, broad compartmentalization across the panel of tissue-derived viruses was not observed. Despite the lack of consistent tissue-specific compartmentalization, sequence variations within patients segregated CNS and non-CNS tat alleles. These amino acid alterations predominated within the transactivation domain of Tat and could account for alterations in the ability of particular Tat proteins to transactivate the LTR. Although a subset of patients demonstrated reduced transactivation capacity among CNS-derived Tat proteins compared to those from matched lymphoid tissues, overall Tat proteins from the CNS to lymphoid compartments maintained similar levels of transactivation function. Together, these data suggest that despite the observed heterogeneity in tat alleles isolated from matched lymphoid to CNS compartments, Tat function is maintained, highlighting the importance of Tat function in HIV-1 neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291

    CAS  PubMed  Google Scholar 

  • Agopian K, Wei BL, Garcia JV, Gabuzda D (2007) CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain to lymphoid tissues, but Pak2 activation is highly variable. Virology 358:119–135

    Article  CAS  PubMed  Google Scholar 

  • Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95:13153–13158

    Article  CAS  PubMed  Google Scholar 

  • Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S (2006) Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 3:78

    Article  PubMed  Google Scholar 

  • Andreoni M (2004) Viral phenotype and fitness. New Microbiol 27:71–76

    CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  • Balboni PG, Bozzini R, Zucchini S, Marconi PC, Grossi MP, Caputo A, Manservigi R, Barbanti-Brodano G (1993) Inhibition of human immunodeficiency virus reactivation from latency by a tat transdominant negative mutant. J Med Virol 41:289–295

    Article  CAS  PubMed  Google Scholar 

  • Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HS, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13:173–184

    Article  CAS  PubMed  Google Scholar 

  • Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bratanich AC, Liu C, McArthur JC, Fudyk T, Glass JD, Mittoo S, Klassen GA, Power C (1998) Brain-derived HIV-1 tat sequences from AIDS patients with dementia show increased molecular heterogeneity. J Neurovirol 4:387–393

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Keller AJ, Chauhan A, Dimayuga FO, Gee J, Keller JN, Nath A (2003) Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23:8417–8422

    CAS  PubMed  Google Scholar 

  • Buscemi L, Ramonet D, Geiger JD (2007) Human immunodeficiency virus type-1 protein Tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis 26:661–670

    Article  CAS  PubMed  Google Scholar 

  • Caputo A, Grossi MP, Bozzini R, Rossi C, Betti M, Marconi PC, Barbanti-Brodano G, Balboni PG (1996) Inhibition of HIV-1 replication and reactivation from latency by tat transdominant negative mutants in the cysteine rich region. Gene Ther 3:235–245

    CAS  PubMed  Google Scholar 

  • Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997) HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11:1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Turchan J, Pocernich C, Bruce-Keller A, Roth S, Butterfield DA, Major EO, Nath A (2003) Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J Biol Chem 278:13512–13519

    Article  CAS  PubMed  Google Scholar 

  • Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, Thompson KA, Gabuzda D, McArthur JC, Pardo CA, Wesselingh SL (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12:146–152

    Article  PubMed  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258

    Article  PubMed  Google Scholar 

  • Collman R, Balliet JW, Gregory SA, Friedman H, Kolson DL, Nathanson N, Srinivasan A (1992) An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J Virol 66:7517–7521

    CAS  PubMed  Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    Article  CAS  PubMed  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44:941–947

    Article  CAS  PubMed  Google Scholar 

  • Del Valle L, Croul S, Morgello S, Amini S, Rappaport J, Khalili K (2000) Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J Neurovirol 6:221–228

    Article  PubMed  Google Scholar 

  • Delling U, Roy S, Sumner-Smith M, Barnett R, Reid L, Rosen CA, Sonenberg N (1991) The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88:6234–6238

    Article  CAS  PubMed  Google Scholar 

  • Endo-Munoz L, Warby T, Harrich D, McMillan NA (2005) Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. Virol J 2:17

    Article  PubMed  Google Scholar 

  • Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287

    CAS  PubMed  Google Scholar 

  • Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci USA 104:3438–3443

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Biancalana S, Hudson D (1989) Activity of synthetic peptides from the Tat protein of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:7397–7401

    Article  CAS  PubMed  Google Scholar 

  • Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7:3143–3147

    CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  CAS  PubMed  Google Scholar 

  • Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain to lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089

    Article  CAS  PubMed  Google Scholar 

  • Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstman K, Moore JP, Wolinsky SM, Gabuzda D (2002) Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76:6277–6292

    Article  CAS  PubMed  Google Scholar 

  • Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, Vesselingh SL, Purcell DF (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1:463–473

    Article  CAS  PubMed  Google Scholar 

  • Gray L, Roche M, Churchill MJ, Sterjovski J, Ellett A, Poumbourios P, Sheffief S, Wang B, Saksena N, Purcell DF, Wesselingh S, Cunningham AL, Brew BJ, Gabuzda D, Gorry PR (2009) Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol 83:5430–5441

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CH, Rice AP (1993) Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase. Virology 197:601–608

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CH, Rice AP (1995) Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 69:1612–1620

    CAS  PubMed  Google Scholar 

  • Hofman FM, Chen P, Incardona F, Zidovetzki R, Hinton DR (1999) HIV-1 tat protein induces the production of interleukin-8 by human brain-derived endothelial cells. J Neuroimmunol 94:28–39

    Article  CAS  PubMed  Google Scholar 

  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6:145–155

    Article  CAS  PubMed  Google Scholar 

  • Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen IS (1987) Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236:819–822

    Article  CAS  PubMed  Google Scholar 

  • Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kappes JC, Conway JA, Price RW, Shaw GM, Hahn BH (1991) Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 65:3973–3985

    CAS  PubMed  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Major EO, Miller AE, Mourrain P, Traub RG, de Widt E, Sever J (1985) Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sci USA 82:1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Mayne M, Bratanich AC, Chen P, Rana F, Nath A, Power C (1998) HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease. Neuroimmunomodulation 5:184–192

    Article  CAS  PubMed  Google Scholar 

  • Meredith LW, Sivakumaran H, Major L, Suhrbier A, Harrich D (2009) Potent inhibition of HIV-1 replication by a Tat mutant. PLoS ONE 4:e7769

    Article  PubMed  Google Scholar 

  • Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63:366–376

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480

    CAS  PubMed  Google Scholar 

  • Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274:17098–17102

    Article  CAS  PubMed  Google Scholar 

  • Niikura M, Dornadula G, Zhang H, Mukhtar M, Lingxun D, Khalili K, Bagasra O, Pomerantz RJ (1996) Mechanisms of transcriptional transactivation and restriction of human immunodeficiency virus type I replication in an astrocytic glial cell. Oncogene 13:313–322

    CAS  PubMed  Google Scholar 

  • Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, Taylor J, Levy R, Murphy RL, Wolinsky SM, Gabuzda D (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain to blood of patients with AIDS. J Virol 77:12336–12345

    Article  CAS  PubMed  Google Scholar 

  • Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70:8055–8063

    CAS  PubMed  Google Scholar 

  • Pantano S, Tyagi M, Giacca M, Carloni P (2004) Molecular dynamics simulations on HIV-1 Tat. Eur Biophys J 33:344–351

    Article  CAS  PubMed  Google Scholar 

  • Rana TM, Jeang KT (1999) Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 365:175–185

    Article  CAS  PubMed  Google Scholar 

  • Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR (2004) Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78:2586–2590

    Article  CAS  PubMed  Google Scholar 

  • Rice AP, Carlotti F (1990a) Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J Virol 64:1864–1868

    CAS  PubMed  Google Scholar 

  • Rice AP, Carlotti F (1990b) Structural analysis of wild-type and mutant human immunodeficiency virus type 1 Tat proteins. J Virol 64:6018–6026

    CAS  PubMed  Google Scholar 

  • Sivakumaran H, Wang B, Gill MJ, Beckholdt B, Saksena NK, Harrich D (2007) Functional relevance of nonsynonymous mutations in the HIV-1 tat gene within an epidemiologically-linked transmission cohort. Virol J 4:107

    Article  PubMed  Google Scholar 

  • Smit TK, Wang B, Ng T, Osborne R, Brew B, Saksena NK (2001) Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 279:509–526

    Article  CAS  PubMed  Google Scholar 

  • Taylor JP, Pomerantz R, Bagasra O, Chowdhury M, Rappaport J, Khalili K, Amini S (1992) TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO J 11:3395–3403

    CAS  PubMed  Google Scholar 

  • Taylor JP, Kundu M, Khalili K (1993) TAR-independent activation of HIV-1 requires the activation domain but not the RNA-binding domain of Tat. Virology 195:780–785

    Article  CAS  PubMed  Google Scholar 

  • Thomas ER, Dunfee RL, Stanton J, Bogdan D, Kunstman K, Wolinsky SM, Gabuzda D (2007a) High frequency of defective vpu compared with tat and rev genes in brain from patients with HIV type 1-associated dementia. AIDS Res Hum Retroviruses 23:575–580

    Article  CAS  PubMed  Google Scholar 

  • Thomas ER, Dunfee RL, Stanton J, Bogdan D, Taylor J, Kunstman K, Bell JE, Wolinsky SM, Gabuzda D (2007b) Macrophage entry mediated by HIV Envs from brain to lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion. Virology 360:105–119

    Article  CAS  PubMed  Google Scholar 

  • Thompson KA, Churchill MJ, Gorry PR, Sterjovski J, Oelrichs RB, Wesselingh SL, McLean CA (2004) Astrocyte specific viral strains in HIV dementia. Ann Neurol 56:873–877

    Article  CAS  PubMed  Google Scholar 

  • Tornatore C, Nath A, Amemiya K, Major EO (1991) Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta. J Virol 65:6094–6100

    CAS  PubMed  Google Scholar 

  • Tornatore C, Meyers K, Atwood W, Conant K, Major E (1994) Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol 68:93–102

    CAS  PubMed  Google Scholar 

  • Verhoef K, Berkhout B (1999) A second-site mutation that restores replication of a Tat-defective human immunodeficiency virus. J Virol 73:2781–2789

    CAS  PubMed  Google Scholar 

  • Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33:576–582

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    Article  CAS  PubMed  Google Scholar 

  • Yukl S, Pillai S, Li P, Chang K, Pasutti W, Ahlgren C, Havlir D, Strain M, Gunthard H, Richman D, Rice AP, Daar E, Little S, Wong JK (2009) Latently-infected CD4+ T cells are enriched for HIV-1 Tat variants with impaired transactivation activity. Virology 387:98–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, from project grants from the Australian National Health and Medical Research Council (NHMRC) to MJC (433920) and PRG (433915), and a multi-centre programme grant from the NHMRC to SLW (358399). LRG and DC were supported by NHMRC Dora Lush Biomedical Research Scholarships. PRG is the recipient of a NHMRC Level 2 Biomedical Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Churchill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowley, D., Gray, L.R., Wesselingh, S.L. et al. Genetic and functional heterogeneity of CNS-derived tat alleles from patients with HIV-associated dementia. J. Neurovirol. 17, 70–81 (2011). https://doi.org/10.1007/s13365-010-0002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-010-0002-5

Keywords

Navigation