Skip to main content
Log in

Direct Identification of Tyrosine Sulfation by using Ultraviolet Photodissociation Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO3 is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003)

    Article  CAS  Google Scholar 

  2. Bettelheim, F.R.: Tyrosine-o-sulfate in a peptide from fibrinogen. J. Am. Chem. Soc. 76, 2838–2839 (1954)

    Article  CAS  Google Scholar 

  3. Huttner, W.B.: Sulphation of tyrosine residues-a widespread modification of proteins. Nature 299, 273–276 (1982)

    Article  CAS  Google Scholar 

  4. Baeuerle, P.A., Huttner, W.B.: Tyrosine sulfation of yolk proteins 1, 2, and 3 in Drosophila melanogaster. J. Biol. Chem. 260, 6434–6439 (1985)

    CAS  Google Scholar 

  5. Beisswanger, R., Corbeil, D., Vannier, C., Thiele, C., Dohrmann, U., Ashman, R.K., Niehrs, K.C., Huttner, W.B.: Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc. Natl. Acad. Sci. U. S. A. 95, 11134–11139 (1998)

    Article  CAS  Google Scholar 

  6. Ouyang, Y.-B., Lane, W.S., Moore, K.L.: Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common post-translational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 2896–2901 (1998)

    Article  CAS  Google Scholar 

  7. Ouyang, Y.-B., Moore, K.L.: Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans. J. Biol. Chem. 273, 24770–24774 (1998)

    Article  CAS  Google Scholar 

  8. Seibert, C., Cadene, M., Sanfiz, A., Chait, B.T., Sakmar, T.P.: Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc. Natl. Acad. Sci. U. S. A. 99, 11031–11036 (2002)

    Article  CAS  Google Scholar 

  9. Danan, L.M., Yu, Z., Hoffhines, A.J., Moore, K.L., Leary, J.A.: Mass spectrometric kinetic analysis of human tyrosylprotein sulfotransferase-1 and -2. J. Am. Soc. Mass Spectrom. 19, 1459–1466 (2008)

    Article  CAS  Google Scholar 

  10. Danan, L.M., Yu, Z., Ludden, P.J., Jia, W., Moore, K.L., Leary, J.A.: Catalytic mechanism of Golgi-resident human tyrosylprotein sulfotransferase-2: a mass spectrometry approach. J. Am. Soc. Mass Spectrom. 21, 1633–1642 (2010)

    Article  CAS  Google Scholar 

  11. Moore, K.L.: The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003)

    Article  CAS  Google Scholar 

  12. Huttner, W.B.: Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 50, 363–376 (1988)

    Article  CAS  Google Scholar 

  13. Stone, M.J., Chuang, S., Hou, X., Shoham, M., Zhu, J.Z.: Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. New Biotechnol. 25, 299–317 (2009)

    Article  CAS  Google Scholar 

  14. Hille, A., Huttner, W.B.: Occurrence of tyrosine sulfate in proteins—a balance sheet. 2. Membrane proteins. Eur. J. Biochem. 188, 587–596 (1990)

    Article  CAS  Google Scholar 

  15. Kehoe, J.W., Bertozzi, C.R.: Tyrosine sulfation: a modulator of extracellular protein–protein interactions. Chem. Biol. 7, R57–R61 (2000)

    Article  CAS  Google Scholar 

  16. Hortin, G.: Sulfation of tyrosine residues in coagulation factor V. Blood 76, 946–952 (1990)

    CAS  Google Scholar 

  17. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N.P., Gerard, C., Sodroski, J., Choe, H.: Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999)

    Article  CAS  Google Scholar 

  18. Monigatti, F., Hekking, B., Steen, H.: Protein sulfation analysis—a primer. Biochim. Biophys. Acta 1764, 1904–1913 (2006)

    Article  CAS  Google Scholar 

  19. Seibert, C., Sakmar, T.P.: Toward a framework for sulfoproteomics: synthesis and characterization of sulfotyrosine-containing peptides. Biopolymers 90, 459–477 (2008)

    Article  CAS  Google Scholar 

  20. Nemeth-Cawley, J.F., Karnik, S., Rouse, J.C.: Analysis of sulfated peptides using positive electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 36, 1301–1311 (2001)

    Article  CAS  Google Scholar 

  21. Wolfender, J.-L., Chu, F., Ball, H., Wolfender, F., Fainzilber, M., Baldwin, M.A., Burlingame, A.L.: Identification of tyrosine sulfation in Conus pennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J. Mass Spectrom. 34, 447–454 (1999)

    Article  CAS  Google Scholar 

  22. Medzihradszky, K.F., Guan, S., Maltby, D.A., Burlingame, A.L.: Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. J. Am. Soc. Mass Spectrom. 18, 1617–1624 (2007)

    Article  CAS  Google Scholar 

  23. Mikesh, L.M., Ueberheide, B., Chi, A., Coon, J.J., Syka, J.E.P., Shabanowitz, J., Hunt, D.F.: The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta 1764, 1811–1822 (2006)

    Article  CAS  Google Scholar 

  24. Yagami, T., Kitagawa, K., Aida, C., Fujiwara, H., Futaki, S.: Stabilization of a tyrosine O-sulfate residue by a cationic functional group: formation of a conjugate acid–base pair. J. Peptide Res. 56, 239–249 (2000)

    Article  CAS  Google Scholar 

  25. Liu, H., Håkansson, K.: Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations. Anal. Chem. 78, 7570–7576 (2006)

    Article  CAS  Google Scholar 

  26. Cantel, S., Brunel, L., Ohara, K., Enjalbal, C., Martinez, J., Vasseur, J.-J., Smietana, M.: An innovative strategy for sulfopeptides analysis using MALDI-TOF MS reflectron positive ion mode. Proteomics 12, 2247–2257 (2012)

    Article  CAS  Google Scholar 

  27. Yu, Y., Hoffhines, A.J., Moore, K.L., Leary, J.A.: Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat. Methods 4, 583–588 (2007)

    Article  CAS  Google Scholar 

  28. Kim, J.-S., Song, S.-U., Kim, H.-J.: Simultaneous identification of tyrosine phosphorylation and sulfation sites utilizing tyrosine-specific bromination. J. Am. Soc. Mass Spectrom. 22, 1916–1925 (2011)

    Article  CAS  Google Scholar 

  29. Drake, S.K., Hortin, G.L.: Improved detection of intact tyrosine sulfate-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in linear negative ion mode. Int. J. Biochem. Cell Biol. 42, 174–179 (2010)

    Article  CAS  Google Scholar 

  30. Edelson-Averbukh, M., Shevchenko, A., Pipkorn, R., Lehmann, W.: Discrimination between peptide O-sulfo- and O-phosphotyrosine residues by negative ion mode electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 2256–2268 (2011)

    Article  CAS  Google Scholar 

  31. Gibson, B.W., Cohen, P.: Liquid secondary ion mass spectrometry of phosphorylated and sulfated peptides and proteins. In: McCloskey, J.A. (ed.) Methods in enzymology, pp. 480–501. Academic Press, New York (1990).

  32. Cook, S., Jackson, G.: Metastable Atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. J. Am. Soc. Mass Spectrom. 22, 1088–1099 (2011)

    Article  CAS  Google Scholar 

  33. Hersberger, K.E., Håkansson, K.: Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal. Chem. 84, 6370–6377 (2012)

    Article  CAS  Google Scholar 

  34. Brodbelt, J.S.: Shedding light on the frontier of photodissociation. J. Am. Soc. Mass Spectrom. 22, 197–206 (2011)

    Article  CAS  Google Scholar 

  35. Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew. Chem. Int. Ed. 48, 7130–7137 (2009)

    Article  CAS  Google Scholar 

  36. Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)

    Article  CAS  Google Scholar 

  37. Madsen, J.A., Boutz, D.R., Brodbelt, J.S.: Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res. 9, 4205–4214 (2010)

    Article  CAS  Google Scholar 

  38. Madsen, J.A., Kaoud, T.S., Dalby, K.N., Brodbelt, J.S.: 193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. Proteomics 11, 1329–1334 (2011)

    Article  CAS  Google Scholar 

  39. Madsen, J.A., Xu, H., Robinson, M.R., Horton, A.P., Shaw, J.B., Giles, D.K., Kaoud, T.S., Dalby, K.N., Trent, M.S., Brodbelt, J.S.: High-throughput database search and large-scale negative polarity LC-MS/MS with ultraviolet photodissociation for complex proteomic samples. Mol. Cell. Proteomics 12, 2604–2614 (2013)

    Article  CAS  Google Scholar 

  40. Shaw, J., Madsen, J., Xu, H., Brodbelt, J.: Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization. J. Am. Soc. Mass Spectrom. 23, 1707–1715 (2012)

    Article  CAS  Google Scholar 

  41. Madsen, J.A., Ko, B.J., Robotham, S.A., Xu, H., Horton, A.P., Iwashkiw, J.A., Shaw, J.B., Feldman, M.F., Brodbelt, J.S.: Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions. Anal. Chem. 85, 9253–9261 (2013)

    Article  CAS  Google Scholar 

  42. Han, S.-W., Lee, S.-W., Bahar, O., Schwessinger, B., Robinson, M.R., Shaw, J.B., Madsen, J.A., Brodbelt, J.S., Ronald, P.C.: Tyrosine sulfation in a Gram-negative bacterium. Nat. Commun. 3, 1153 (2012)

    Article  Google Scholar 

  43. Vasicek, L., Ledvina, A., Shaw, J., Griep-Raming, J., Westphall, M., Coon, J., Brodbelt, J.: Implementing photodissociation in an Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 22, 1105–1108 (2011)

    Article  CAS  Google Scholar 

  44. Shaw, J.B., Li, W., Holden, D.D., Zhang, Y., Griep-Raming, J., Fellers, R.T., Early, B.P., Thomas, P.M., Kelleher, N.L., Brodbelt, J.S.: Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J. Am. Chem. Soc. 135, 12646–12651 (2013)

    Article  CAS  Google Scholar 

  45. Xu, H., Freitas, M.: A mass accuracy sensitive probability based scoring algorithm for database searching of tandem mass spectrometry data. BMC Bioinforma. 8, 133 (2007)

    Article  Google Scholar 

  46. Xu, H., Yang, L., Freitas, M.: A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time. BMC Bioinforma. 9, 347 (2008)

    Article  Google Scholar 

  47. Xu, H., Freitas, M.A.: MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9, 1548–1555 (2009)

    Article  Google Scholar 

  48. Xu, H., Freitas, M.A.: Monte Carlo simulation-based algorithms for analysis of shotgun proteomic data. J. Proteome Res. 7, 2605–2615 (2008)

    Article  CAS  Google Scholar 

  49. Yagami, T., Kitagawa, K., Aida, C., Fujiwara, H., Futaki, S.: Stabilization of a tyrosine O-sulfate residue by a cationic functional group: formation of a conjugate acid–base pair. J. Peptide Res. 56, 239–249 (2000)

    Article  CAS  Google Scholar 

  50. Antoine, R., Joly, L., Tabarin, T., Broyer, M., Dugourd, P., Lemoine, J.: Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 21, 265–268 (2007)

    Article  CAS  Google Scholar 

  51. Rumachik, N., McAlister, G., Russell, J., Bailey, D., Wenger, C., Coon, J.: Characterizing peptide neutral losses induced by negative electron-transfer dissociation (NETD). J. Am. Soc. Mass Spectrom. 23, 718–727 (2012)

    Article  CAS  Google Scholar 

  52. Sun, Q., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2008)

    Article  Google Scholar 

  53. Straub, R.F., Voyksner, R.D.: Negative ion formation in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 578–587 (1993)

    Article  CAS  Google Scholar 

  54. Yamashita, M., Fenn, J.B.: Negative ion production with the electrospray ion source. J. Phys. Chem. 88, 4671–4675 (1984)

    Article  CAS  Google Scholar 

  55. Hiraoka, K., Kudaka, I.: Negative-mode electrospray-mass spectrometry using nonaqueous solvents. Rapid Commun. Mass Spectrom. 6, 265–268 (1992)

    Article  CAS  Google Scholar 

  56. Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001)

    Article  CAS  Google Scholar 

  57. Zhang, X., Clausen, M.R., Zhao, X., Zheng, H., Bertram, H.C.: Enhancing the power of liquid chromatography-mass spectrometry-based urine metabolomics in negative ion mode by optimization of the additive. Anal. Chem. 84, 7785–7792 (2012)

    Article  CAS  Google Scholar 

  58. McAlister, G.C., Russell, J.D., Rumachik, N.G., Hebert, A.S., Syka, J.E.P., Geer, L.Y., Westphall, M.S., Pagliarini, D.J., Coon, J.J.: Analysis of the acidic proteome with negative electron-transfer dissociation mass spectrometry. Anal. Chem. 84, 2875–2882 (2012)

    Article  CAS  Google Scholar 

  59. Balsved, D., Bundgaard, J.R., Sen, J.W.: Stability of tyrosine sulfate in acidic solutions. Anal. Biochem. 363, 70–76 (2007)

    Article  CAS  Google Scholar 

  60. Balderrama, G.D., Meneses, E.P., Orihuela, L.H., Hernández, O.V., Franco, R.C., Robles, V.P., Batista, C.V.F.: Analysis of sulfated peptides from the skin secretion of the Pachymedusa dacnicolor frog using IMAC-Ga enrichment and high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 25, 1017–1027 (2011)

    Article  CAS  Google Scholar 

  61. Amano, Y., Shinohara, H., Sakagami, Y., Matsubayashi, Y.: Ion-selective enrichment of tyrosine-sulfated peptides from complex protein digests. Anal. Biochem. 346, 124–131 (2005)

    Article  CAS  Google Scholar 

  62. Hoffhines, A.J., Damoc, E., Bridges, K.G., Leary, J.A., Moore, K.L.: Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J. Biol. Chem. 281, 37877–37887 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by National Institute of Health grants R21GM099028 (to J.S.B.) and RO1HD056022 (to K.L.M.), the Robert A. Welch Foundation (F1155 to J.S.B.), and institutional funds from the Oklahoma Medical Research Foundation (to K.L.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Brodbelt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 6034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M.R., Moore, K.L. & Brodbelt, J.S. Direct Identification of Tyrosine Sulfation by using Ultraviolet Photodissociation Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1461–1471 (2014). https://doi.org/10.1007/s13361-014-0910-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0910-3

Keywords

Navigation