Skip to main content
Log in

Responses of the leading mode of coldwave intensity in China to a warming climate

  • Articles
  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2014

Abstract

Regional extreme cold events have changed notably with recent global warming. Understanding how these cold extremes change in China is an urgent issue. This study examines the responses of the dominant mode of China coldwave intensity (CWI) to global warming by comparing observations with simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The leading modes of the CWI derived from empirical orthogonal function (EOF) analysis have different features in different epochs. During the cold period (1957–1979), the leading mode is characterized by centers of extreme values of CWI in northern China; while during the warm period (1980–2009), the leading mode features two maximum loading centers over northern and southern China. The southward extension of the extreme value center is associated with an increase in the intensity of coldwave variations in southern China relative to previous decades. A multi-model ensemble of seven state-of-the-art climate models shows an extension of the maximum loading of the CWI leading mode into southern China by the end of the 21st century (2080–2099) under the A1B global warming scenario (atmospheric CO2 concentration of 720 ppm). These results indicate that the primary response of the leading mode of CWI to global warming might be a southward extension of the extreme value center. This response may be associated with the southward shift of the storm track observed during recent decades. A significant change in the baroclinic growth rates around 40°N is accompanied by a consistent change in synoptic eddies in the troposphere, which may indicate a shift in the preferred latitude for the growth of eddies. As a result, the storm track tends to move southward, suggesting that southern China may experience increased storminess due to increased baroclinic instability in the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackmon, M. L., 1976: A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, et al., 2005; Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi; 10.1029/2005JD006548.

    Article  Google Scholar 

  • Cattiaux, J., R. Vautard, C. Cassou, et al., 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, doi; 10.1029/2010GL044613.

    Google Scholar 

  • Chang, C. P., M. M. Lu, and B. Wang, 2010: The East Asian winter monsoon. The Global Monsoon System; Research and Forecast, 2nd ed., Chang, C. P., et al., Eds., World Scientific, 99–110.

    Google Scholar 

  • Chen, W. L., Z. H. Jiang, L. Li, et al., 2011: Simulation of regional climate change under the IPCC A2 scenario in Southeast China. Climate Dyn., 36, 491–507, doi; 10.1007/s00382-010-0910-3.

    Article  Google Scholar 

  • Ding, Y. H., and D. R. Sikka, 2006: Cold waves and cold surges. The Asian Monsoon. Wang, B., Ed., Praxis, 184–194.

    Google Scholar 

  • —, Z. Y. Wang, Y. F. Song, et al., 2008: Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteor. Sinica, 22(4), 538–558.

    Google Scholar 

  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

    Article  Google Scholar 

  • Easterling, D. R., J. L. Evans, P. Y. Groisman, et al., 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417–425.

    Article  Google Scholar 

  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398–403.

    Article  Google Scholar 

  • Gong, D. Y., and C. -H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 1–9.

    Article  Google Scholar 

  • Gong Daoyi and Wang Shaowu, 1999: Long-term variability of the Siberian high and the possible connection to global warming. Acta Geographica Sinica, 54, 125–133. (in Chinese)

    Google Scholar 

  • Heino, R., et al., 1999: Progress in the study of climate extremes in northern and central Europe. Climatic Change, 42, 151–181.

    Article  Google Scholar 

  • Jiang, Z. H., J. Song, L. Li, et al., 2012a: Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110, 385–401, doi: 10.1007/s10584-011-0090-0.

    Article  Google Scholar 

  • —, T. Ma, and Z. W. Wu, 2012b: China coldwave duration in a warming winter: Change of the leading mode. Theor. Appl. Climatol., doi: 10.1007/s00704-012-0613-2.

    Google Scholar 

  • Kalnay, E., et al., 1996: The NCEP/NCAR 40-yr reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, et al., 2002: NCEP-DEO AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Karl, T. R., R. W. Knight, D. R. Easterling, et al., 1996; Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279–291.

    Article  Google Scholar 

  • Kodra, E., K. Steinhaeuser, and A. R. Ganguly, 2011; Persisting cold extremes under the 21st-century warming scenarios. Geophys. Res. Lett., 38, L08705, doi: 10.1029/2011GL047103.

    Google Scholar 

  • Lee, Y. Y., G. H. Lim, and J. S. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, doi: 10.1029/2009JD012813.

    Google Scholar 

  • Li, H., L. Feng, and T. Zhou, 2011a: Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv. Atmos. Sci., 28(2), 433–447, doi; 10.1007/s00376-010-0013-4.

    Article  Google Scholar 

  • —, —, and —, 2011b: Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv. Atmos. Sci., 28(2), 448–463, doi: 10.1007/s00376-010-0052-x.

    Article  Google Scholar 

  • Li, J. P., Z. W. Wu, Z. H. Jiang, et al., 2010: Can global warming strengthen the East Asian summer onsoon? J. Climate, 23, 6696–6705.

    Article  Google Scholar 

  • —, and —, 2012: Importance of autumn Arctic sea ice to northern winter snowfall. Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1205075109.

    Google Scholar 

  • Lin, H., and Z. W. Wu, 2011a: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 2801–2813.

    Article  Google Scholar 

  • —, and —, 2011b: Contribution of Tibetan Plateau snow cover to the extreme winter condition of 2009–2010. Atmos. Ocean, doi; 10.1080/07055900.2011.649036.

    Google Scholar 

  • Ma, T., Z. W. Wu, and Z. H. Jiang, 2012: How does China coldwave frequency respond to global warming? Climate Dyn., doi: 10.1007/s00382-012-1354-8.

    Google Scholar 

  • North, G. R., T. L. Bell, R. F. Cahalan, et al., 1982; Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706.

    Article  Google Scholar 

  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, et al., 2004: Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Climate, 18, 1411–1422.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, B. D. Santer, et al., 2009; Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci., USA, 106(21), 8441–8446.

    Article  Google Scholar 

  • Plummer, N. et al., 1999: Changes in climate extremes over the Australian region and New Zealand during the 20th century. Climatic Change, 42, 183–202.

    Article  Google Scholar 

  • Ren, X. J., X. Q. Yang, T. J. Zhou, et al., 2011: Diagnostic comparison of wintertime East Asian subtropical jet and Polar-front jet: Large-scale characteristics and transient eddy activities. Acta Meteor. Sinica. 25(1), 21–33.

    Article  Google Scholar 

  • Santer, B., et al., 2009: Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. USA, 106(35), 14, 778–14, 783, doi: 10.1073/pnas.0901736106.

    Article  Google Scholar 

  • Scaife, A. A., et al., 2011: Climate change projections and stratosphere-troposphere interation. Climate Dyn., doi: 10.1007/s00382-011-1080-7.

    Google Scholar 

  • Tao Shiyan and Wei Jie, 2008: Severe snow and freezing rain in January 2008 in the southern China. Climatic Environ. Res., 13(4), 337–350. (in Chinese)

    Google Scholar 

  • Uppala, S., et al., 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi; 10.1256/qj.04.176.

    Article  Google Scholar 

  • Wang, B., Z. W. Wu, C. P. Chang, et al., 2010a: Another look at climate variations of the East Asian winter monsoon: Northern and southern modes. J. Climate, 23, 1495–1512.

    Article  Google Scholar 

  • Wang, C., H. Liu, and S. Lee, 2010b: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., doi; 10.1002/asl.278.

    Google Scholar 

  • Wen, M., S. Yang, A. Kumar, et al., 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111–1131.

    Article  Google Scholar 

  • Wittman, M. A. H., L. M. Polvani, R. K. Scott, et al., 2004: Stratospheric influence on baroclinic lifecycles and its connection to the Arctic oscillation. Geophys. Res. Lett., 31, L16113, doi; 10.1029/2004GL020503.

    Article  Google Scholar 

  • World Meteorological Organization, 2010: A Snapshot of Some Extreme Events over the Past Decade. http://www.wmo.int/pages/prog/wcp/documents/extremes.pdf.

    Google Scholar 

  • Wu, Z. W., J. P. Li, B. Wang, et al., 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, doi: 10.1029/2008JD011501.

    Article  Google Scholar 

  • —, —, Z. H. Jiang, et al., 2010: Predictable climate dynamics of abnormal East Asian winter monsoon; Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., doi: 10.1007/s00382-010-0938-4.

    Google Scholar 

  • Yang Hui and Li Chongyin, 2008: Influence of Arctic oscillation on temperature and precipitation in winter. Climatic Envon. Res., 13(4), 395–404. (in Chinese)

    Google Scholar 

  • Zhang, H. Q., J. Qin, and Y. Li, 2011: Climatic background of cold and wet winter in southern China. Part I: Observational analysis. Climate Dyn., doi; 10.1007/s00382-011-1022-4.

    Google Scholar 

  • Zhou, T., D. Gong, J. Li, et al., 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon: Recent progress and state of affairs. Meteorologische Zeitschrift, 18(4), 455–467.

    Article  Google Scholar 

  • Zhou, T. J., and R. C. Yu, 2006: Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19(22), 5843–5858.

    Article  Google Scholar 

  • Zhu Weijun and Li Ying, 2010: Interdecadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism. Acta Meteor. Sinica, 68(4), 477–486. (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Jiang  (江志红).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2013CB430202 and 2010CB950401), National Natural Science Foundation of China (41230528), China Meteorological Administration Special Public Welfare Research Fund (GYHY200906016), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Jiang, Z. & Wu, Z. Responses of the leading mode of coldwave intensity in China to a warming climate. Acta Meteorol Sin 27, 673–683 (2013). https://doi.org/10.1007/s13351-013-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0103-1

Key words

Navigation