Skip to main content

Advertisement

Log in

Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan

  • Review Paper
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO2) removal (CDR), which removes CO2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. By 2100, climate change is likely to have altered most ecosystems in their structure, function and biodiversity, and most of these alterations could compromise the services those ecosystems provide to society (IPCC 2007a). Terrestrial ecosystems currently are highly important in carbon sequestration, but the terrestrial biosphere can also act as a net source of carbon to the atmosphere. There is an increasingly high risk of plant and animal species extinctions across terrestrial, fresh water, and marine biota as global mean temperatures exceed a warming of 2–3 °C above pre-industrial levels. These impacts on biodiversity are in many cases practically irreversible. The structure and functioning of terrestrial ecosystems are likely to change; some of these impacts may be positive and others negative. The structure and functioning of marine ecosystems also are likely to be impacted regionally by climate change with models projecting elevated productivity at high latitudes and reduced productivity at low latitudes (Doney 1996). The most vulnerable ecosystems and species are thought to be coral reefs, the sea ice biome, other high-latitude ecosystems, mountain ecosystems, and Mediterranean-climate ecosystems.

  2. There is a fundamental problem in estimating the ecosystem (and other) effects of geoengineering, namely the choice of alternative (reference) scenario against which they are assessed. Throughout this document we compare with a reasonably likely scenario as our “control,” i.e., one in the mid-range of SRES scenarios (IPCC 2007a), midway between the extremes of Business-as-Usual and very rapid reduction of emissions. This assumes some “moderate” rate of fossil carbon and other greenhouse gases (GHG) into the atmosphere from energy use and land use changes. The expected responses of ecosystems to the atmospheric and climatic changes resulting from increasing GHG concentrations were reviewed and summarized (IPCC 2007b). We assume that this would correspond to a leveling off of CO2 concentrations and temperatures at approximately doubled CO2 (560 ppm).

  3. See http://www.oxfordgeoengineering.org/about.php. Accessed 7 June 2011.

  4. See http://www.srmgi.org/.

  5. A description of the London Convention (or London Protocol) is available at http://www.imo.org/OurWork/Environment/SpecialProgramsAndInitiatives/Pages/London-Convention-and-Protocol.aspx.

  6. The proposed five principles are available at http://www.sbs.ox.ac.uk/centres/insis/news/Pages/regulation-geoengineering.aspx.

  7. Articles on this topic are available in the special issue of Stanford Journal of Law, Science and Policy at http://www.stanford.edu/group/sjlsp/cgi-bin/articles/index.php?CatID=1013.

  8. See Footnote 7.

  9. See Footnote 2.

  10. We consider afforestation here as a CDR method, even though in some circumstances it is also considered a mitigation method, e.g., avoided deforestation.

  11. CDR methods do not have this so-called “termination problem” (unless storage proves unstable), since any reduction of GHG concentrations is necessarily gradual and essentially permanent, and this can be regarded as a major advantage of this class of methods.

  12. See note 3.

  13. The efforts already being made through the Solar Radiation Management Governance Initiative (of the Royal Society, the Third World Academy of Science, and the Environmental Defense Fund) and through the London Convention for ocean fertilization will contribute to the development of necessary systems and norms.

References

  • Arneth, A., S.P. Harrison, S. Zaehle, K. Tsigaridis, S. Menon, B.J. Bartlein, J. Feichter, A. Korhola, et al. 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3: 525–532. doi:10.1038/ngeo935.

    Article  CAS  Google Scholar 

  • Betts, R.A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187–190.

    Article  CAS  Google Scholar 

  • Blackstock, J.J., and J.C.S. Long. 2010. The politics of geoengineering. Science 327: 527.

    Article  CAS  Google Scholar 

  • Bopp, L., C. Le Quere, M. Heimann, A.C. Manning, and P. Monfray. 2002. Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16. doi:10.1029/2001gb001445.

  • Boyd, P.W., and S.C. Doney. 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29: 53-1–53-4. 10.1029/2001gl014130.

  • Boyd, P.W., C.S. Law, C.S. Wong, Y. Nojiri, A. Tsuda, M. Levasseur, S. Takeda, R. Rivkin, et al. 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428: 549–553. doi:10.1038/nature02437.

    Article  CAS  Google Scholar 

  • Boyd, P.W., T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, et al. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315: 612–617. doi:10.1126/science.1131669.

    Article  CAS  Google Scholar 

  • Boyd, P.W. 2008. Ranking geo-engineering schemes. Nature Geoscience 1: 722–724. doi:10.1038/ngeo348.

    Article  CAS  Google Scholar 

  • Boyd, P.W. 2009. Geopolitics of geoengineering. Nature Geoscience 2: 812. doi:10.1038/ngeo710.

    Article  CAS  Google Scholar 

  • Boyd, P.W., and M.J. Ellwood. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience 3: 675–682. doi:10.1038/ngeo964.

    Article  CAS  Google Scholar 

  • Boyd, P.W., D.S. Mackie, and K.A. Hunter. 2010. Aerosol iron deposition to the surface ocean—modes of iron supply and biological responses. Marine Chemistry 120: 128–143. doi:10.1016/j.marchem.2009.01.008.

    Article  CAS  Google Scholar 

  • Cao, L., and K. Caldeira. 2010. Can ocean iron fertilization mitigate ocean acidification? Climatic Change 99: 303–311. doi:10.1007/s10584-010-9799-4.

    Article  CAS  Google Scholar 

  • Carslaw, K.S., O. Boucher, D.V. Spracklen, G.W. Mann, J.G.L. Rae, S. Woodward, and M. Kulmala. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics 10: 701–1737.

    Article  Google Scholar 

  • Chan, F., J.A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W.T. Peterson, and B.A. Menge. 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319: 920. doi:10.1126/science.1149016.

    Article  CAS  Google Scholar 

  • Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533. doi:10.1038/nature03972.

    Article  CAS  Google Scholar 

  • Crutzen, P.J. 2006. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change 77: 211–219. doi:10.1007/s10584-006-9101-y.

    Article  CAS  Google Scholar 

  • Cunningham, S.A., T. Kanzow, D. Rayner, M.O. Baringer, W.E. Johns, J. Marotzke, H.R. Longworth, E.M. Grant, et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317: 935–938. doi:10.1126/science.1141304.

    Article  CAS  Google Scholar 

  • Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice, and G.M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332: 53–58.

    Article  CAS  Google Scholar 

  • de Baar, H.J.W., P.W. Boyd, K.H. Coale, M.R. Landry, A. Tsuda, P. Assmy, D.C.E. Bakker, Y. Bozec, et al. 2005. Synthesis of iron fertilization experiments: From the Iron Age in the age of enlightenment. Journal of Geophysical Research-Oceans 110: 1–24. doi:10.1029/2004jc002601.

    Google Scholar 

  • Doney, S.C. 1996. A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study site. Journal of Geophysical Research-Oceans 101: 25615–25634.

    Article  Google Scholar 

  • Doney, S.C. 2006. Oceanography—plankton in a warmer world. Nature 444: 695–696. doi:10.1038/444695a.

    Article  CAS  Google Scholar 

  • Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other Co2 problem. Annual Review of Marine Science 1: 169–192. doi:10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Doney, S.C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328: 1512–1516. doi:10.1126/science.1185198.

    Article  CAS  Google Scholar 

  • Dooley, J.J., and K.V. Calvin. 2011. Temporal and spatial deployment of carbon dioxide capture and storage technologies across the representative concentration pathways. Energy Procedia 4: 5845–5852.

    Article  CAS  Google Scholar 

  • Duce, R.A., J. LaRoche, K. Altieri, K.R. Arrigo, A.R. Baker, D.G. Capone, S. Cornell, F. Dentener, et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320: 893–897. doi:10.1126/science.1150369.

    Article  CAS  Google Scholar 

  • Durner, G.M., et al. 2009. Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79: 25–58.

    Article  Google Scholar 

  • Elliott, S., K.S. Lackner, H.J. Ziock, M.K. Dubey, H.P. Hanson, S. Barr, N.A. Ciszkowski, and D.R. Blake. 2001. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophysical Research Letters 28: 1235–1238.

    Article  CAS  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048.

    Article  CAS  Google Scholar 

  • Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240.

    Article  CAS  Google Scholar 

  • Field, C.B., D.B. Lobell, H.A. Peters, and N.R. Chiariello. 2007. Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources 32: 1–29. doi:10.1146/annurev.energy.32.053006.141119.

    Article  Google Scholar 

  • Gnanadesikan, A., J.L. Sarmiento, and R.D. Slater. 2003. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Global Biogeochemical Cycles 17: 1050. doi:10.1029/2002gb001940.

    Article  Google Scholar 

  • Gnanadesikan, A., and I. Marinov. 2008. Export is not enough: Nutrient cycling and carbon sequestration. Marine Ecology-Progress Series 364: 289–294. doi:10.3354/meps07550.

    Article  CAS  Google Scholar 

  • Gnanadesikan, A., K. Emanuel, G.A. Vecchi, W.G. Anderson, and R. Hallberg. 2010. How ocean color can steer pacific tropical cyclones. Geophysical Research Letters 37: L18802. doi:10.1029/2010gl044514.

    Article  Google Scholar 

  • Gu, L.H., D.D. Baldocchi, S.C. Wofsy, J.W. Munger, J.J. Michalsky, S.P. Urbanski, and T.A. Boden. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299: 2035–2038.

    Article  Google Scholar 

  • Hamme, R.C., P.W. Webley, W.R. Crawford, F.A. Whitney, M.D. DeGrandpre, S.R. Emerson, C.C. Eriksen, K.E. Giesbrecht, et al. 2010. Volcanic ash fuels anomalous plankton bloom in subarctic northeast pacific. Geophysical Research Letters 37: 1–5. doi:10.1029/2010gl044629.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328: 1523–1528. doi:10.1126/science.1189930.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2005. Special report on carbon dioxide capture and storage. Prepared by Working Group III, ed. B. Metz, O.D., H.C. De Coninck, M. Loos, and L.A. Meyer. Cambridge: Cambridge University Press.

  • IPCC (Intergovernmental Panel on Climate Change). 2007a. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report, ed. S. Solomon, D.Q., M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.

  • IPCC (Intergovernmental Panel on Climate Change). 2007b. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report, ed. M.L. Parry, O.F.C., J.P. Palutikof, P.J. Van Der Linden, and C.E. Hanson. Cambridge University Press, Cambridge.

  • Jackson, R.B., E.G. Jobbagy, R. Avissar, S.B. Roy, D.J. Barrett, C.W. Cook, K.A. Farley, D.C. le Maitre, et al. 2005. Trading water for carbon with biological sequestration. Science 310: 1944–1947. doi:10.1126/science.1119282.

    Article  CAS  Google Scholar 

  • Jackson, R.B., and J. Salzman. 2010. Pursuing geoengineering for atmospheric restoration. Issues in Science and Technology 26: 67–76.

    Google Scholar 

  • Jin, X., N. Gruber, H. Frenzel, S.C. Doney, and J.C. McWilliams. 2008. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5: 385–406.

    Article  CAS  Google Scholar 

  • Jones, A., J. Haywood, and O. Boucher. 2009. Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research-Atmospheres 114: 1–9. doi:10.1029/2008jd011450.

    Google Scholar 

  • Karl, D., and R. Letelier. 2008. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Marine Ecology-Progress Series 364: 257–268. doi:10.3354/meps07547.

    Article  CAS  Google Scholar 

  • Keith, D.W., M. Ha-Duong, and J.K. Stolaroff. 2006. Climate strategy with CO2 capture from the air. Climatic Change 74: 17–45. doi:10.1007/s10584-005-9026-x.

    Article  CAS  Google Scholar 

  • Keller, M., D.S. Schimel, W.W. Hargrove, and F.M. Hoffman. 2008. A continental strategy for the national ecological observatory network. Frontiers in Ecology and the Environment 6: 282–284.

    Article  Google Scholar 

  • Kravitz, B., A. Robock, L. Oman, G. Stenchikov, and A.B. Marquardt. 2009. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research-Atmospheres 114: D14109. doi:10.1029/2009jd011918.

    Article  Google Scholar 

  • Lackner, K.S. 2003. A guide to CO2 sequestration. Science 300: 1677–1678.

    Article  CAS  Google Scholar 

  • Latham, J. 1990. Control of global warming. Nature 347: 339–340.

    Article  Google Scholar 

  • Latham, J. 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmospheric Science Letters 3: 52–58. doi:10.1006/ASLE.2002.0048.

    Article  Google Scholar 

  • Latham, J., P. Rasch, C.C. Chen, L. Kettles, A. Gadian, A. Gettelman, H. Morrison, K. Bower, et al. 2008. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 3969–3987. doi:10.1098/rsta.2008.0137.

    Article  Google Scholar 

  • Law, C.S. 2008. Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Marine Ecology-Progress Series 364: 283–288. doi:10.3354/meps07549.

    Article  CAS  Google Scholar 

  • Lenton, T.M., and N.E. Vaughan. 2009. The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics 9: 5539–5561.

    Article  CAS  Google Scholar 

  • Lenton, T.M. 2010. The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Management 1: 145–160.

    Article  CAS  Google Scholar 

  • MacCracken, M.C. 2009. On the possible use of geoengineering to moderate specific climate change impacts. Environmental Research Letters 045107: 045114. doi:10.1088/1748-9326/4/4/045107.

    Google Scholar 

  • Manizza, M., M.J. Follows, S. Dutkiewicz, J.W. McClelland, D. Menemenlis, C.N. Hill, A. Townsend-Small, and B.J. Peterson. 2009. Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles 23. doi:10.1029/2008gb003396.

  • Martin, J.H., R.M. Gordon, and S.E. Fitzwater. 1990. Iron in antarctic waters. Nature 345: 156–158.

    Article  CAS  Google Scholar 

  • Matear, R.J., and B. Elliott. 2004. Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. Journal of Geophysical Research-Oceans 109. doi:10.1029/2000jc000321.

  • Matthews, H.D., and K. Caldeira. 2007. Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences of the United States of America 104: 9949–9954.

    Article  CAS  Google Scholar 

  • MEA (Millenium Ecosystem Assessment). 2005. Ecosystems and human well-being: Synthesis. Washington: Island Press.

  • Melillo, J.M., P.A. Steudler, J.D. Aber, K. Newkirk, H. Lux, F.P. Bowles, C. Catricala, A. Magill, et al. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176.

    Article  CAS  Google Scholar 

  • Mercado, L.M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P.M. Cox. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458: 1014–1017. doi:10.1038/nature07949.

    Article  CAS  Google Scholar 

  • Mooney, H., A. Larigauderie, M. Cesario, T. Elmquist, O. Hoegh-Guldberg, S. Lavorel, G.M. Mace, M. Palmer, et al. 2009. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability 1: 46–54. doi:10.1016/j.cosust.2009.07.006.

    Article  Google Scholar 

  • Moore, J.C., S. Jevrejeva, and A. Grinsted. 2010. Efficacy of geoengineering to limit 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 107: 15699–15703. doi:10.1073/pnas.1008153107.

    Article  CAS  Google Scholar 

  • Norby, R.J., J.M. Warren, C.M. Iversen, B.E. Medlyn, and R.E. McMurtrie. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National academy of Sciences of the United States of America 107: 19368–19373. doi:10.1073/pnas.1006463107.

    Article  CAS  Google Scholar 

  • Parkhill, K.A., and N.F. Pidgeon. 2011. Public engagement on geoengineering research: Preliminary report on the SPICE deliberative workshops. Technical Report (Understanding Risk Group Working Paper, 11-01). Cardiff: School of Psychology, Cardiff University.

  • Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. doi:10.1038/nature01286.

    Article  CAS  Google Scholar 

  • Pereira, H.M., P.W. Leadley, V. Proenca, R. Alkemade, J.P.W. Scharlemann, J.F. Fernandez-Manjarres, M.B. Araujo, P. Balvanera, et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501. doi:10.1126/science.1196624.

    Article  CAS  Google Scholar 

  • Pielke, R.A., G. Marland, R.A. Betts, T.N. Chase, J.L. Eastman, J.O. Niles, D.D.S. Niyogi, and S.W. Running. 2002. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 360: 1705–1719. doi:10.1098/rsta.2002.1027.

    Article  CAS  Google Scholar 

  • Rasch, P.J., S. Tilmes, R.P. Turco, A. Robock, L. Oman, C.C. Chen, G.L. Stenchikov, and R.R. Garcia. 2008. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 4007–4037. doi:10.1098/rsta.2008.0131.

    Article  CAS  Google Scholar 

  • Rasch, P.J., J. Latham, and C.C. Chen. 2009. Geoengineering by cloud seeding: Influence on sea ice and climate system. Environmental Research Letters 4: 045112–045119. doi:10.1088/1748-9326/4/4/045112.

    Article  Google Scholar 

  • Rau, G.H., and K. Caldeira. 2002. Minimizing effects of CO2 storage in oceans. Science 295: 275–276.

    Article  CAS  Google Scholar 

  • Rau, G.H. 2011. CO2 mitigation via capture and chemical conversion in seawater. Environmental Science and Technology 45: 1088–1092. doi:10.1021/es102671x.

    Article  CAS  Google Scholar 

  • Raupach, M.R., P.J. Rayner, D.J. Barrett, R.S. DeFries, M. Heimann, D.S. Ojima, S. Quegan, and C.C. Schmullius. 2005. Model–data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biology 11: 378–397. doi:10.1111/j.1365-2486.2005.00917.x.

    Article  Google Scholar 

  • Raven, J.A., et al. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. London: Royal Society.

    Google Scholar 

  • Richardson, A.J., and D.S. Schoeman. 2004. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305: 1609–1612.

    Article  CAS  Google Scholar 

  • Ricke, K., G. Morgan, and M. Allen. 2010. Regional climate response to solar-radiation management. Nature Geoscience 3: 537–541. doi:10.10.38/NGEO915.

    Article  CAS  Google Scholar 

  • Robock, A., L. Oman, and G.L. Stenchikov. 2008. Regional climate responses to geoengineering with tropical and arctic SO2 injections. Journal of Geophysical Research-Atmospheres 113: D16101–D16115. doi:10.1029/2008jd010050.

    Article  Google Scholar 

  • Rotenberg, E., and D. Yakir. 2010. Contribution of semi-arid forests to the climate system. Science 327: 451–454. doi:10.1126/science.1179998.

    Article  CAS  Google Scholar 

  • Saba, V.S., M.A.M. Friedrichs, M.E. Carr, D. Antoine, R.A. Armstrong, I. Asanuma, O. Aumont, N.R. Bates, et al. 2010. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at bats and hot. Global Biogeochemical Cycles 24. doi:10.1029/2009gb003655.

  • Sabine, C.L., M. Heimann, and P. Artaxo. 2004. Current status and past trends of the global carbon cycle, 17–44. Washington: Island Press.

    Google Scholar 

  • Salter, S., G. Sortino, and J. Latham. 2008. Sea-going hardware for the cloud albedo method of reversing global warming. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 3989–4006. doi:10.1098/rsta.2008.0136.

    Article  Google Scholar 

  • Sarmiento, J., R. Slater, J. Dunne, A. Gnanadesikan, and M. Hiscock. 2010. Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7: 3593–3624. doi:10.5194/bg-7-3593-2010.

    Article  CAS  Google Scholar 

  • Shepherd, J., K. Caldeira, P. Cox, J. Haigh, D. Keith, B. Launder, G. Mace, G. MacKerron, et al. 2009. Geoengineering the climate. London: The Royal Society.

    Google Scholar 

  • Silver, M.W., S. Bargu, S.L. Coale, C.R. Benitez-Nelson, A.C. Garcia, K.J. Roberts, E. Sekula-Wood, K.W. Bruland, et al. 2010. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proceedings of the National Academy of Sciences of the United States of America 107: 20762–20767. doi:10.1073/pnas.1006968107.

    Article  CAS  Google Scholar 

  • Socolow, R., M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, N. Lewis, M. Mazzotti, et al. 2011. Direct air capture of CO2 with chemicals, a technology assessment for the APS panel on public affairs. http://www.aps.org/policy/reports/assessments/loader.cfm?csModule=security/getfile&PageID=244407.

  • Soden, B.J., R.T. Wetherald, G.L. Stenchikov, and A. Robock. 2002. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 296: 727–730.

    Article  CAS  Google Scholar 

  • Spracklen, D.V., B. Bonn, and K.S. Carslaw. 2008. Boreal forests, aerosols and the impacts on clouds and climate. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 4613–4626. doi:10.1098/rsta.2008.0201.

    Article  CAS  Google Scholar 

  • Stenchikov, G.L., I. Kirchner, A. Robock, H.F. Graf, J.C. Antuna, R.G. Grainger, A. Lambert, and L. Thomason. 1998. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research-Atmospheres 103: 13837–13857.

    Article  CAS  Google Scholar 

  • Tilmes, S., R. Muller, and R. Salawitch. 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320: 1201–1204. doi:10.1126/science.1153966.

    Article  CAS  Google Scholar 

  • Trenberth, K.E., and A. Dai. 2007. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 34(5): L15702. doi:10.1029/2007gl030524.

    Article  Google Scholar 

  • Trick, C.G., B.D. Bill, W.P. Cochlan, M.L. Wells, V.L. Trainer, and L.D. Pickell. 2010. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences of the United States of America 107: 5887–5892. doi:10.1073/pnas.0910579107.

    Article  CAS  Google Scholar 

  • Wang, G.L., and D.S. Schimel. 2003. Climate change, climate modes, and climate impacts. Annual Review of Environment and Resources 28: 1–28.

    Article  Google Scholar 

  • Watson, A.J., P.W. Boyd, S.M. Turner, T.D. Jickells, and P.S. Liss. 2008. Designing the next generation of ocean iron fertilization experiments. Marine Ecology Progress Series 364: 303–309.

    Article  CAS  Google Scholar 

  • Wigley, T.M.L. 2006. A combined mitigation/geoengineering approach to climate stabilization. Science 314: 452–454. doi:10.1126/science.1131728.

    Article  CAS  Google Scholar 

  • Zeebe, R.E., and D. Archer. 2005. Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophysical Research Letters 32. doi:10.1029/2005gl022449.

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the U.S. National Science Foundation grant AGS1111205 and the U.K. Natural Environment Research Council, as well as seed funding and outreach support from the International Geosphere-Biosphere Program. We also gratefully acknowledge workshop participation from Richard Norris, Richard Somerville, Susan Hassol, Kathy Barbeau, Luis Gylvan, Phil Ineson, Ninad Bondre, Ben Kravitz, Spencer Hill, Lili Xia, Robin Stevens, and Anita Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn M. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, L.M., Rasch, P.J., Mace, G.M. et al. Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. AMBIO 41, 350–369 (2012). https://doi.org/10.1007/s13280-012-0258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0258-5

Keywords

Navigation