Skip to main content

Advertisement

Log in

Elevated Strain and Structural Disarray Occur at the Right Ventricular Apex

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The right ventricular apex (RVA) is a potential hot spot for development of cardiac rhythm anomalies. Many conditions, including arrhythmogenic right ventricular cardiomyopathy and Brugada’s syndrome affect the RVA, and further, the RVA remains an incompletely characterized pacing region. Whether there are structural reasons underlying these conduction properties remains unsettled. In the current study, we characterize the mechanical strains and structural attributes of the right ventricular wall, and test the hypothesis that the right ventricular apex experiences heterogeneous strain distributions and altered fiber organization, and is thus susceptible to conduction alterations. Electromechanical wave imaging (EWI), or elastography, of hearts was used to quantify mechanical strains occurring through a cardiac cycle. Histological and immunofluorescence imaging techniques were used to examine cardiac wall structure and arrangement of junctional proteins. Right ventricular mechanical strains were elevated and sustained throughout systole, compared to the left ventricle and septum. Heterogeneous strain distributions, myocardial fiber disarray, and altered junctional protein localization occured at the RVA. Disarray and altered strain distributions suggest decreased structural strength at the right ventricular apex in particular and increased mechanical impositions in the right ventricle, respectively. Thus, these data demonstrate why the right ventricular apex may be particularly vulnerable to conduction abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ARVC:

Arrhythmogenic Right Ventricular Cardiomyopathy

RV:

Right ventricle

LV:

Left ventricle

RVA:

Right ventricular apex

References

  1. Asimaki, A., H. Tandri, H. D. Huang, et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 360(11):1075–1084, 2009.

    Article  Google Scholar 

  2. Furman, S., and J. B. Schwedel. An intracardiac pacemaker for Stokes-Adams seizures. N. Engl. J. Med. 261:943–948, 1959.

    Article  Google Scholar 

  3. Grover, M., and S. A. Glantz. Endocardial pacing site affects left ventricular end-diastolic volume and performance in the intact anesthetized dog. Circ. Res. 53(1):72–85, 1983.

    Google Scholar 

  4. Hayashi, M., S. Takatsuki, P. Maison-Blanche, et al. Ventricular repolarization restitution properties in patients exhibiting type 1 Brugada electrocardiogram with and without inducible ventricular fibrillation. J. Am. Coll. Cardiol. 51(12):1162–1168, 2008.

    Article  Google Scholar 

  5. Ho, S. Y., and P. Nihoyannopoulos. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92:I2–I13, 2006.

    Article  Google Scholar 

  6. Kallel, F., and J. Ophir. A least-squares strain estimator for elastography. Ultrason. Imaging 19(3):195–208, 1997.

    Google Scholar 

  7. Kaplan, S. R., J. J. Gard, N. Protonotarios, et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm. 1(1):3–11, 2004.

    Article  Google Scholar 

  8. Konofagou, E. E., S. Fung-Kee-Fung, J. Luo, and M. Pernot. Imaging the mechanics and electromechanics of the heart. Conf. Proc. IEEE Eng. Med. Biol. Soc. Suppl:6648–6651, 2006.

    Google Scholar 

  9. Kwong, K. F., R. B. Schuessler, K. G. Green, et al. Differential expression of gap junction proteins in the canine sinus node. Circ. Res. 82(5):604–612, 1998.

    Google Scholar 

  10. Leclercq, C., D. Gras, A. Le Helloco, L. Nicol, P. Mabo, and C. Daubert. Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing. Am. Heart J. 129(6):1133–1141, 1995.

    Article  Google Scholar 

  11. Lee, W. N., J. Provost, K. Fujikura, J. Wang, and E. E. Konofagou. In vivo study of myocardial elastography under graded ischemia conditions. Phys. Med. Biol. 56(4):1155–1172, 2011.

    Article  Google Scholar 

  12. Lobo, F. V., H. A. Heggtveit, J. Butany, M. D. Silver, and J. E. Edwards. Right ventricular dysplasia: morphological findings in 13 cases. Can. J. Cardiol. 8(3):261–268, 1992.

    Google Scholar 

  13. Marcus, F. I., G. H. Fontaine, G. Guiraudon, et al. Right ventricular dysplasia—a report of 24 adult cases. Circulation 65(2):384–398, 1982.

    Article  Google Scholar 

  14. Navarrete, A. Idiopathic ventricular tachycardia arising from the right ventricular apex. Europace 10(11):1343–1345, 2008.

    Article  Google Scholar 

  15. Provost, J., W. N. Lee, K. Fujikura, and E. E. Konofagou. Electromechanical wave imaging of normal and ischemic hearts in vivo. IEEE Trans. Med. Imaging 29(3):625–635, 2010.

    Google Scholar 

  16. Sen-Chowdhry, S., M. D. Lowe, S. C. Sporton, and W. J. McKenna. Arrhythmogenic right ventricular cardiomyopathy: clinical presentation, diagnosis, and management. Am. J. Med. 117(9):685–695, 2004.

    Article  Google Scholar 

  17. Sheehan, F., and A. Redington. The right ventricle: anatomy, physiology and clinical imaging. Heart 94(11):1510–1515, 2008.

    Article  Google Scholar 

  18. Takayama, Y., K. D. Costa, and J. W. Covell. Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. Am. J. Physiol. Heart C. 282(4):H1510–H1520, 2002.

    Google Scholar 

  19. Thiene, G., A. Nava, D. Corrado, L. Rossi, and N. Pennelli. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 318(3):129–133, 1988.

    Article  Google Scholar 

  20. Usyk, T. P., R. Mazhari, and A. D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61(1–3):143–164, 2000.

    Article  MATH  Google Scholar 

  21. Wang, S. G., W. N. Lee, J. Provost, J. W. Luo, and E. E. Konofagou. A composite high-frame-rate system for clinical cardiovascular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55(10):2221–2233, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mahyar Zoghi for his assistance. This work was supported in part by NIH HL102361, and the National Science Foundation Graduate Research Fellowship.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Huang.

Additional information

Associate Editor Jay Humphrey oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, V., Provost, J., Shah, S. et al. Elevated Strain and Structural Disarray Occur at the Right Ventricular Apex. Cardiovasc Eng Tech 3, 52–61 (2012). https://doi.org/10.1007/s13239-011-0081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0081-3

Keywords

Navigation