Skip to main content
Log in

Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of novel lanthanide(III) complexes (Ln=Gd, Er, Yb) based on dendritic diphenylquinoxaline (DPQ) ligands was designed and synthesized with the aim of enhancing the luminescence intensity of Er3+ and Yb3+ ions for photonic applications. The diphenyl-quinoxaline ligand was introduced as a photon antenna for efficient light harvesting and subsequent energy transfer onto the Ln3+ ions. The dendritic complexes showed strong near-IR emission at 981 (Yb3+) and 1,530 (Er3+) nm, which was sensitized through energy transfer from the excited states of the diphenyl-quinoxaline ligands. The near-IR emission intensity of the lanthanide ions in second-generation [Ln(G2-DPQ-COO)3(terpy)] complexes was significantly enhanced, due to the light-harvesting effect, with respect to [Ln(G1-DPQ-COO)3(terpy)]. However, increasing the size of the dendron in [Ln(G3-DPQ-COO)3(terpy)] was found to be detrimental to the emission efficiency. This may be attributed to the twisted structure of the dendritic ligand and suggests that conformational effects should be taken into consideration when designing ligands for photonic amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Kang, B. S. Harrison, M. Bouguettaya, T. J. Foley, J. M. Boncella, K. S. Schanze, and J. R. Reynolds, Adv. Funct. Mater., 13, 205 (2003).

    Article  CAS  Google Scholar 

  2. T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe, and C. Adachi, Adv. Mater., 16, 1082 (2004).

    Article  CAS  Google Scholar 

  3. H. K. Kim, J. B. Oh, N. S. Baek, S. G. Roh, M. K. Nah, and Y. H. Kim, Bull. Korea Chem. Soc., 26, 201 (2005).

    Article  CAS  Google Scholar 

  4. Y. H. Kim, N. S. Baek, J. B. Oh, M. K. Nah, S. G. Roh, B. J. Song, and H. K. Kim, Macromol. Res., 15, 272 (2007).

    Article  CAS  Google Scholar 

  5. C. Chen, D. Zhang, T. Li, D. M. Zhang, L. M. Song, and Z. Zhen, J. Nanosci. Technol., 10, 1947 (2010).

    Article  CAS  Google Scholar 

  6. K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, J. Mater. Chem., 20, 7526 (2010).

    Article  CAS  Google Scholar 

  7. S. V. Eliseeva and J.-C. G. Bünzli, Chem. Soc. Rev., 39, 189 (2010).

    Article  CAS  Google Scholar 

  8. J.-C. G. Bünzli and S. V. Eliseeva, J. Rare Earths., 28, 824 (2010).

    Article  Google Scholar 

  9. S. V. Eliseeva and J.-C. G. Bünzli, New J. Chem., 35, 1165 (2011).

    Article  CAS  Google Scholar 

  10. J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias, Chem. Soc. Rev., 40, 926 (2011).

    Article  CAS  Google Scholar 

  11. S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. Van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, J. Phys. Chem. A, 104, 5457 (2000).

    Article  CAS  Google Scholar 

  12. G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, and T. S. Jones, J. Am. Chem. Soc., 127, 524 (2005).

    Article  CAS  Google Scholar 

  13. D. B. Nie, Z. Q. Chen, Z. Q. Bian, J. Q. Zhou, Z. W. Liu, F. F. Chen, Y. L. Zhao, and C. H. Huang, New J. Chem., 31, 1639 (2007).

    Article  CAS  Google Scholar 

  14. I. Hernandez, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, Adv. Mater., 22, 5356 (2010).

    Article  CAS  Google Scholar 

  15. I. Hernandez, R. H. C. Tan, J. M. Pearson, P. B. Wyatt, and W. P. Gillin, J. Phys. Chem. B, 113, 7474 (2009).

    Article  CAS  Google Scholar 

  16. A. Monguzzi, A. Milani, L. Lodi, M. I. Trioni, R. Tubino, and C. Castiglioni, New J. Chem., 33, 1542 (2009).

    Article  CAS  Google Scholar 

  17. C. Bischof, J. Wahsner, J. Scholten, S. Trosien, and M. Seitz, J. Am. Chem. Soc., 132, 14334 (2010).

    Article  CAS  Google Scholar 

  18. F. Quochi, M. Saba, H. Artizzu, M. L. Mercuri, P. Deplano, A. Mura, and G. Bongiovanni, J. Phys. Chem. Lett., 1, 2733 (2010).

    Article  CAS  Google Scholar 

  19. D. Astruc, E. Boisselier, and C. Ornelas, Chem. Rev., 110, 1857 (2010).

    Article  CAS  Google Scholar 

  20. M. Kawa and J. M. J. Frechet, Thin Sol. Films., 331, 259 (1998).

    Article  CAS  Google Scholar 

  21. M. A. Alcala, S. Y. Kwan, C. M. Shade, M. G. Lang, H. Uh, M. Y. Wang, S. G. Weber, D. L. Bartlett, S. Petoud, and Y. J. Lee, Nanomedicine, 7, 249 (2011).

    Article  CAS  Google Scholar 

  22. J. W. Ka and H. K. Kim, Tetrahedron Lett., 45, 4519 (2004).

    Article  CAS  Google Scholar 

  23. J. B. Oh, Y. H. Kim, M. K. Nah, and H. K. Kim, J. Lumin., 111, 255 (2005).

    Article  CAS  Google Scholar 

  24. J. B. Oh, M. K. Nah, Y. H. Kim, M. S. Kang, J. W. Ka, and H. K. Kim, Adv. Funct. Mater., 17, 413 (2007).

    Article  CAS  Google Scholar 

  25. N. S. Baek, Y. H. Kim, and H. K. Kim, Bull. Korea Chem. Soc., 27, 1729 (2006).

    Article  CAS  Google Scholar 

  26. N. S. Baek, Y. H. Kim, S. G. Roh, B. K. Kwak, and H. K. Kim, Adv. Funct. Mater., 16, 1873 (2006).

    Article  CAS  Google Scholar 

  27. M. Kawa and J. M. J. Frechet, Chem. Mater., 10, 286 (1998).

    Article  CAS  Google Scholar 

  28. A. Adronov and J. M. J. Frechet, Chem. Commun., 1701 (2000).

  29. X. Cao, F. Jin, Y. F. Li, W. Q. Chen, X. M. Duan, and L. M. Yang, New J. Chem., 33, 1578 (2009).

    Article  CAS  Google Scholar 

  30. V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, and F. Vögtle, J. Am. Chem. Soc., 124, 6461 (2002).

    Article  CAS  Google Scholar 

  31. S. I. Klink, G. A. Hebbink, L. Grave, F. G. A. Peters, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, Eur. J. Org. Chem., 10, 1923 (2000).

    Article  Google Scholar 

  32. M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J.-C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 75, 149 (1997).

    Article  CAS  Google Scholar 

  33. A. Dadabhoy, S. Faulkner, and P. G. Sammes, J. Chem. Soc., Perkin Trans., 2, 348 (2002).

    Google Scholar 

  34. S. Comby and J.-C. G. Bünzli, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr., J.-C. G. Bünzli, and V. K. Pecharsky, Eds., Elsevier Science B.V., Amsterdam, 2007, Vol. 37, p 235.

    Google Scholar 

  35. T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri, and M. D. Ward, Chem. Eur. J., 14, 9389 (2008).

    Article  CAS  Google Scholar 

  36. S. R. Meech and D. C. Phillips, J. Photochem., 23, 193 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eom, Y.K., Ryu, J.H., Bünzli, JC.G. et al. Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification. Macromol. Res. 21, 556–564 (2013). https://doi.org/10.1007/s13233-013-1100-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1100-z

Keywords

Navigation