Skip to main content
Log in

Black and green tea improves lipid profile and lipid peroxidation parameters in Wistar rats fed a high-cholesterol diet

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, the efficacy of black tea (BT) and green tea (GT) was studied in relation to serum and hepatic oxidative abnormalities in hypercholesterolemic rats. Hypercholesterolemia was induced in male Wistar rats (8 week old) by feeding them with a high-cholesterol diet (HCD) for 35 days. The experimental rats were given BT and GT as a supplement (7 g/L) via drinking water. Increased hepatic and serum lipid profile along with abnormalities in oxidative marker, with a concomitant increase in the body weight, food intake, and food efficiency, were seen in hypercholesterolemic rats. Following the supplementation of BT and GT to rats fed with HCD, significantly lower levels of serum and hepatic cholesterol, triglycerides, serum low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol levels were observed, when compared with hypercholesterolemic group. Further, significantly lower levels in the serum and hepatic lipid peroxidation, body weight gain, and food efficiency were observed in BT and GT group when compared with control and HCD fed group. However, no such significant changes were observed in the food intake upon supplementation with BT and GT. These results suggest that supplementation of BT and GT may protect against the serum and hepatic abnormalities in hypercholesterolemic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NR:

Normal

HCD:

High-cholesterol diet

BT:

Black tea

GT:

Green tea

LDL:

Low-density lipoprotein

VLDL:

Very low-density lipoprotein

HDL:

High-density lipoprotein

LPO:

Lipid peroxidation

CVD:

Cardiovascular disease

MDA:

Malondialdehyde

CV:

Coefficients of variation

References

  1. Alshatwi AA, Al-Obaaid MA, Al-Sedairy SA et al (2010) Tomato powder is more protective than lycopene supplement against lipid peroxidation in rats. Nutr Res 30:66–73

    Article  CAS  PubMed  Google Scholar 

  2. Anderson KJ, Teuber SS, Gobeille A et al (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. biochemical and molecular action of nutrients. J Nutr 131:2837–2842

    CAS  PubMed  Google Scholar 

  3. Assy N, Kaita K, Mymin D et al (2000) Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci 45:1929–1934

    Article  CAS  PubMed  Google Scholar 

  4. Balasinska B (1998) Hypocholesterolemic effect of dietary evening primrose (Oenothera paradoxa) cake extract in rats. Food Chem 63:453–459

    Article  CAS  Google Scholar 

  5. Balentine DA (1992) Manufacturing and chemistry of tea. In: Ho CT, Lee CY, Huang MT (eds) Phenolic compounds in food and their effects on health, antioxidants and cancer prevention. American Chemical Society, Washington

    Google Scholar 

  6. Bocan TM (1998) Animal models of atherosclerosis and interpretation of drug intervention studies. Curr Pharm Des 4:37–52

    CAS  PubMed  Google Scholar 

  7. Bulur H, Ozdemirler G, Oz B et al (1995) High cholesterol diet supplemented with sunflower seed oil but not olive oil stimulates lipid peroxidation in plasma, liver, and aorta of rats. J Nutr Biochem 6:547–550

    Article  CAS  Google Scholar 

  8. Cai Y, Luo Q, Sun M et al (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  Google Scholar 

  9. Chen D, Milacic V, Chen MS et al (2008) Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol 23:487–496

    PubMed  Google Scholar 

  10. Davi G, Alessandrini P, Mezzetti A et al (1997) In vivo formation of 8-Epi-prostaglandin F2 alpha is increased in hypercholesterolemia. Arterioscler Thromb Vasc Biol 17:3230–3235

    CAS  PubMed  Google Scholar 

  11. Devasagayam TP (1986) Lipid peroxidation in rat uterus. Biochim Biophys Acta 876:507–514

    CAS  PubMed  Google Scholar 

  12. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  13. Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med 276:273–281

    Article  CAS  PubMed  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  15. Geetha RK, Vasudevan DM (2004) Inhibition of lipid peroxidation by botanical extracts of Ocimum sanctum: in vivo and in vitro studies. Life Sci 76:21–28

    Article  CAS  PubMed  Google Scholar 

  16. Giakoustidis AE, Giakoustidis DE, Koliakou K et al (2008) Inhibition of intestinal ischemia/reperfusion induced apoptosis and necrosis via down-regulation of the NF-kB, c-Jun and caspase-3 expression by epigallocatechin-3-gallate administration. Free Radic Res 42:180–188

    Article  CAS  PubMed  Google Scholar 

  17. Gokkusu C, Ademoglu E, Turkoglu UM et al (1996) Thymosin alpha 1 protects liver and aorta from oxidative damage in atherosclerotic rabbits. Life Sci 59:1059–1067

    Article  CAS  PubMed  Google Scholar 

  18. Goto T, Yoshida Y, Kiso M et al (1996) Simultaneous analysis of individual catechins and caffeine in green tea. J Chromatogr A749:295–299

    Article  Google Scholar 

  19. Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Prev Med 21:334–350

    Article  CAS  PubMed  Google Scholar 

  20. Guo Q, Zhao B, Li M et al (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304:210–222

    CAS  PubMed  Google Scholar 

  21. Halliwell B (1996) Mechanisms involved in the generation of free radicals. Pathol Biol (Paris) 44:6–13

    CAS  Google Scholar 

  22. Harrison DG, Cai H (2003) Endothelial control of vasomotion and nitric oxide production. Cardiol Clin 21:289–302

    Article  PubMed  Google Scholar 

  23. Hayek T, Fuhrman B, Vaya J et al (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    CAS  PubMed  Google Scholar 

  24. Hogberg J, Larson RE, Kristoferson A (1974) NADPH-dependent reductase solubilized from microsomes by peroxidation and its activity. Biochem Biophys Res Commun 56:836–842

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan M, Hayek T, Raz A et al (2001) Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J Nutr 131:2082–2089

    CAS  PubMed  Google Scholar 

  26. Kay NMR (1991) Drosophila to bacteriophage to erythrocyte: the erythrocyte as a model for molecular and membrane aging of terminally differentiated cells. Gerontology 37:25–32

    Article  Google Scholar 

  27. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533

    Article  CAS  PubMed  Google Scholar 

  28. Khan SA, Priyamvada S, Farooq N et al (2009) Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res 59:254–262

    Article  CAS  PubMed  Google Scholar 

  29. Kuriyama S (2008) The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr 138:1548S–1553S

    CAS  PubMed  Google Scholar 

  30. Lee MH, Chen SC, Min BW (1989) Effects of extraction method on the determination of tea tannin and catechins. J Chin Agri Chem 27:82–88

    CAS  Google Scholar 

  31. Lin JK, Lin CL, Liang YC et al (1998) Survey of catechins, gallic acid, and methylxanthines in green, Oolong, Pu-erh, and black tea. J Agric Food Chem 46:3635–3642

    Article  CAS  Google Scholar 

  32. Napoli C, Postiglione A, Triggiani M et al (1995) Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia. Atherosclerosis 118:259–273

    Article  CAS  PubMed  Google Scholar 

  33. Okrainec K, Banerjee DK, Eisenberg MJ (2004) Coronary artery disease in the developing world. Am Heart J 148:7–15

    Article  PubMed  Google Scholar 

  34. Pannala AS, Rice-Evans CA, Halliwell B et al (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun 232:164–168

    Article  CAS  PubMed  Google Scholar 

  35. Ramesh E, Elanchezhian R, Sakthivel M et al (2008) Epigallocatechin gallate improves serum lipid profile and erythrocyte and cardiac tissue antioxidant parameters in Wistar rats fed an atherogenic diet. Fundam Clin Pharmacol 22:275–284

    Article  CAS  PubMed  Google Scholar 

  36. Ramesh E, Jayakumar T, Elanchezhian R et al (2009) Green tea catechins, alleviate hepatic lipidemic–oxidative injury in Wistar rats fed an atherogenic diet. Chem Biol Interact 180:10–19

    Article  CAS  PubMed  Google Scholar 

  37. Ramesh E, Geraldine P, Thomas PA (2010) Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem Biol Interact 183:125–132

    Article  CAS  PubMed  Google Scholar 

  38. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  39. Richmond N (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. J Clin Chem 19:1350–1356

    CAS  Google Scholar 

  40. Sasaki YF, Kawaguchi S, Kamaya A et al (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res 519:103–119

    CAS  PubMed  Google Scholar 

  41. Shafi G, Munshi A, Hasan TN et al (2009) Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa. Cancer Cell Int 27:9–29

    Google Scholar 

  42. Shin DW, Kim SN, Lee SM et al (2009) (−)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem Pharmacol 77:125–133

    Article  CAS  PubMed  Google Scholar 

  43. Sohn EJ, Kang DG, Mun YJ et al (2005) Anti-atherogenic effects of the methanol extract of Sorbus cortex in atherogenic-diet rats. Biol Pharm Bull 28:1444–1449

    Article  CAS  PubMed  Google Scholar 

  44. Stangl V, Dreger H, Stangl K et al (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73:348–358

    Article  CAS  PubMed  Google Scholar 

  45. Steinberg D (1989) The cholesterol controversy is over: why did it take so long? Circulation 80:1070–1078

    CAS  PubMed  Google Scholar 

  46. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217

    Article  CAS  PubMed  Google Scholar 

  47. Sudhahar V, Ashok Kumar S, Varalakshmi P (2006) Role of lupeol and lupeol linoleate on lipidemic–oxidative stress in experimental hypercholesterolemia. Life Sci 78:1329–1335

    Article  CAS  PubMed  Google Scholar 

  48. Sudhahar V, Ashok Kumar S, Varalakshmi P et al (2007) Mitigating role of lupeol and lupeol linoleate on hepatic lipidemic–oxidative injury and lipoprotein peroxidation in experimental hypercholesterolemia. Mol Cell Biochem 295:189–198

    Article  CAS  PubMed  Google Scholar 

  49. Tebib K, Besancon P, Rouanet JM (1994) Dietary grape seed tannins affect lipoproteins, lipoprotein lipases and tissue lipids in rats fed hypercholesterolemic diets. J Nutr 124:2451–2457

    CAS  PubMed  Google Scholar 

  50. Trinder P (1969) Enzymatic method of triglycerides. Ann Clin Biochem 6:24–27

    CAS  Google Scholar 

  51. Vijayakumar RS, Nalini N (2006) Lipid-lowering efficacy of piperine from Piper nigrum L. in high-fat diet and antithyroid drug-induced hypercholesterolemic rats. J Food Biochem 30:405–421

    Article  CAS  Google Scholar 

  52. Wissler RW (1992) Theories and new horizons in the pathogenesis of atherosclerosis and the mechanisms of clinical effects. Arch Pathol Lab Med 116:1281–1291

    CAS  PubMed  Google Scholar 

  53. Yusuf S, Reddy S, Ounpuu S et al (2001) Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104:2746–2753

    Article  CAS  PubMed  Google Scholar 

  54. Yusuf S, Reddy S, Ounpuu S et al (2001) Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 104:2855–2864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University vice presidency of postgraduate studies and research, and King Saud University for the financial assistance provided. This research was also supported by the King Abdul-Aziz City for Science and Technology as well as by the Graduate College of King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alshatwi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshatwi, A.A., Al Obaaid, M.A., Al Sedairy, S.A. et al. Black and green tea improves lipid profile and lipid peroxidation parameters in Wistar rats fed a high-cholesterol diet. J Physiol Biochem 67, 95–104 (2011). https://doi.org/10.1007/s13105-010-0053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0053-3

Keywords

Navigation