Skip to main content
Log in

Limits of Design for Recycling and “Sustainability”: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Metals and materials play a pivotal role in society as their properties impart unique functionality to engineered structures and consumer products. Metals are theoretically infinitely recyclable; however, the functionality and design of consumer product complicate recycling due to their ever more complex structures producing un-liberated low grade and complex recyclates. Metallurgical smelting ingenuity, good technology and intelligent use of thermodynamics and transfer processes gets metallurgists and recyclers a far way down the path of creating high recycling rates from a large range of primary concentrates and recyclates. However, the 2nd Law of Thermodynamics teaches us the practical limits of recycling in terms of entropy creation, which is determined by the complexity of the recyclates and hence to the economics of processing/technology and metal/energy recovery. The usual simple accounting type tools do not rise to the challenge. Therefore, a key issue for the creation of “sustainable systems” and hence the minimization of waste (or in other words achieve high recycling rates) is the creation of optimal industrial ecological systems with optimally linked Best Available Techniques (BAT). This must maximize the recovery of materials from ores and recyclates within the boundaries of consumer behaviour, product design/functionality, thermodynamics, legislation, technology and economics. Examples will show how recyclate quality/grade predicted by recycling models affects entropy creation, while also reviewing various published methodologies. This paper shows that simulation models are a prerequisite to designing “sustainable” systems as these can predict recyclate grade/quality/losses/toxicity of streams, the link to entropy and economics and the realization of company ideals and mission statements in this regard. In other words, to dematerialize society requires detail input by engineers, their predictive tools and economic based design approaches to engineer a sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Agricola, G.: De Re Metallica, 439p. (Translated by H.C. Hoover and L.H. Hoover, Dover Publications, New York, 1950, 638p.) (1556)

  2. Von Carlowitz, H.C.: Sylvicultura Oeconomica—Hausswirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht, Irmer, TU Bergakademie Freiberg. Freiberg, Germany ([1713] 2000)

  3. Lorenz, D.P.: The application of sustainable development principles to the theory and practice of property valuation, PhD Thesis, University Karlsruhe, Germany, 275p. (2006)

  4. Norgate, T.E., Jahanshahi, S., Rankin, W.J.: Assessing the environmental impact of metal production processes. J. Clean. Prod. 15, 838–848 (2007)

    Article  Google Scholar 

  5. U.S. Geological Survey, Mineral commodity summaries 2010: U.S. Geological Survey, 193p. (www.usgs.gov) (2010)

  6. Bertram, M., Martchek, K.J., Rombach, G.: Material flow analysis in the aluminum industry. J. Ind. Ecol. 13(5), 650–654 (2009)

    Article  Google Scholar 

  7. EU: Critical raw materials for the EU, Report of the Ad-hoc working group on defining critical raw materials. Enterprise and Industry Directorate General website http://ec.europa.eu/enterprise/policies/rawmaterials/documents/index_en.htm (2010)

  8. Von Weizsaecker, E.U., Hargroves, K., Smith, M.H., Desha, C., Stasinopoulos, P.: Factor five—transforming the global economy through 80% improvements in resource productivity, Earthscan, 448p. (2009)

  9. Reuter, M.A., Heiskanen, K., Boin, U., Van Schaik, A., Verhoef, E., Yang, Y.: The metrics of material and metal ecology, harmonizing the resource, technology and environmental cycles. Elsevier, BV, Amsterdam, 706p. (ISBN: 13 978-0-444-51137-9) (2005)

  10. Buckminster Fuller, R.: Critical Path, 471p. St. Martin’s Press, New York (1981)

  11. McDonough, W., Braungart, M.: Cradle To Cradle Remaking the Way We Make Things, 193p. North Point Press, New York (2002)

  12. Maier, M.W.: Architecting principles for system of systems. Syst. Eng. 1(4), 267–284 (1998)

    Article  Google Scholar 

  13. Van Schaik, A., Reuter, M.A., Van Stokkom, H., Jonk, J., Witter, V.: Management of the web of water and web of materials. Min. Eng. 23, 157–174 (2010)

    Article  Google Scholar 

  14. World Business Council for Sustainable Development (http://www.wbcsd.org) (2006)

  15. Liverman, D.M., Hanson, M.E., Brown, B.J., Merideth Jr., R.W.: Global sustainability: toward measurement. Environ. Manage. 12(2), 133–143 (1988)

    Article  Google Scholar 

  16. Global Reporting Initiative (http://www.globalreporting.org) (2006)

  17. Carson, R.: Silent Spring. Houghton Mifflien, Boston (1962)

    Google Scholar 

  18. Gößling, S.: Entropy production as a measure for resource use—method development and application to metallurgical processes, PhD, University of Hamburg, Germany, 113p. (2001)

  19. Graedel, T.E., Allenby, B.R.: Industrial ecology, 2nd edn, 363p. Upper Saddle River, NJ, Prentice Hall (2003)

  20. Korhonen, J., Huisingh, D., Chiu, A.S.F.: Applications of industrial ecology-an overview of the special issue. J. Clean. Prod. 12, 803–807 (2004)

    Article  Google Scholar 

  21. Allenby, B.: Earth systems engineering: the role of industrial ecology in an engineered. J. Ind. Ecol. 2(3), 73–93 (1999)

    Article  MathSciNet  Google Scholar 

  22. Cohen-Rosenthal, E.: A walk on the human side of industrial ecology. Am. Behav. Sci. 44(2), 245 (2000)

    Google Scholar 

  23. Hertwich, E.G.: Lifecycle approaches to sustainable consumption: a critical review. Environ. Sci. Technol. 39(13), 4673–4684 (2005)

    Article  Google Scholar 

  24. Finnveden, G., Moberg, A.: Environmental systems analysis tools—an overview. J. Clean. Prod. 13, 1165–1173 (2005)

    Article  Google Scholar 

  25. Brunner, P.H., Rechberger, H.: Practical Handbook of Material Flow Analysis, 336p. Lewis Publishers, Boca Raton, FL, ISBN 1566706041

  26. Sendra, C., Gabarrell, X., Vicent, T.: Material flow analysis adapted to an industrial area. J. Clean. Prod. 15, 1706–1715 (2007)

    Article  Google Scholar 

  27. Hashimoto, S., Moriguchi, Y.: Proposal of six indicators of material cycles for describing society’s metabolism: from the viewpoint of material flow analysis. Resour. Conserv. Recycling 40, 185–200 (2004)

    Article  Google Scholar 

  28. Ruth, M.: Dynamic modeling of industrial ecosystems. J. Ind. Ecol. 13(6), 839–842 (2009)

    Article  Google Scholar 

  29. Davis, J., Geyer, R., Ley, J., He, J., Clift, R., Kwan, A., Sansom, M., Jackson, T.: Time-dependent material flow analysis of iron and steel in the UK Part 2. Scrap generation and recycling. Resour. Conserv. Recycl. 51, 118–140 (2007)

    Article  Google Scholar 

  30. Saurat, M., Bringezu, S.: Platinum group metal flows of Europe, Part II exploring the technological and institutional potential for reducing environmental impacts. J. Ind. Ecol. 13(3), 404–421 (2009)

    Article  Google Scholar 

  31. Nakamura, S., Nakajima, K., Kondo, Y., Nagasaka, T.: The waste input-output approach to materials flow analysis—concepts and application to base metals. J. Ind. Ecol. 11(4), 50–63 (2007)

    Article  Google Scholar 

  32. Eriksson, O., Frostell, B., Björklund, A., Assefa, G., Sundqvist, J.-O., Granath, J., Carlsson, M., Baky, A., Thyselius, L.: ORWARE—a simulation tool for waste management. Resour. Conserv. Recycl. 36, 287–307 (2002)

    Article  Google Scholar 

  33. Jeswani, H.K., Azapagic, A., Schepelmann, P., Ritthoff, M.: Options for broadening and deepening the LCA approaches. J. Clean. Prod. 18, 120–127(2010)

    Google Scholar 

  34. Graedel, T.E., Van der Voet, E.: Linkages of Sustainability, Ernst Strüngmann Forum Report, 532p. MIT Press, Cambridge, MA, USA (2010)

  35. Lloyd, S.M., Ries, R.: Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J. Ind. Ecol. 11(1), 161–179 (2007)

    Article  Google Scholar 

  36. Huisman, J., Boks, C., Stevels, A.: Quotes for environmentally weighted recyclability—the concept of describing product recyclability in terms of environmental value. Int. J. Prod. Res. 41(16), 3649–3665 (2003)

    Article  Google Scholar 

  37. Villanueva, A., Wenzel, H.: Paper waste–recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manage. 27, 29–46 (2007)

    Article  Google Scholar 

  38. Johnson, J., Reck, B.K., Wang, T., Graedel, T.E.: The energy benefit of stainless steel recycling. Energy Policy 36, 181–192 (2008)

    Article  Google Scholar 

  39. Schmidt, M.: The Sankey diagram in energy and material flow management Part II: methodology and current applications. J. Ind. Ecol. 12(2), 173–185 (2008)

    Article  Google Scholar 

  40. Bailey, R., Bras, B., Allen, J.K.: Applying ecological input-output flow analysis to material flows in industrial systems Part II: flow metrics. J. Ind. Ecol. 8(1–2), 69–91 (2004)

    Google Scholar 

  41. Reuter, M.A., Van Schaik, A.: 95 Prozent Wiedergewinnungsgrad bei Altfahrzeugen—ein „Perpetuum mobile (95% Recycling rate for cars—a perpetual motion machine). RECYCLING Magazine, 14, 18–21 (2006)

  42. Anastas, P.T., Breen, J.J.: Design for the environment and green chemistry: the heart and soul of industrial ecology. J. Clean. Prod. 5(1–2), 97–102 (1997)

    Article  Google Scholar 

  43. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (1998)

    Google Scholar 

  44. Manley, J.B., Anastas, P.T., Cue Jr., B.W.: Frontiers in green chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod. 16, 743–750 (2008)

    Article  Google Scholar 

  45. Azapagic, A., Clift, R.: Life cycle assessment and multiobjective optimisation. J. Clean. Prod. 7, 135–143 (1999)

    Article  Google Scholar 

  46. Allen, D.T., Shonnard, D.R.: Green engineering: environmentally conscious design of chemical processes, 552p. Prentice Hall PTR, New Jersey (2002)

  47. García-Serna, J., Pérez-Barrigón, L., Cocero, M.J.: New trends for design towards sustainability in chemical engineering: Green engineering. Chem. Eng. J. 133, 7–30 (2007)

    Article  Google Scholar 

  48. Basson, L., Petrie, J.: A critical systems approach to decision support for process engineering. Comput. Chem. Eng. 31, 876–888 (2007)

    Article  Google Scholar 

  49. IChemE.: The Sustainability Metrics: Sustainable Development Metrics. Institution of Chemical Engineers (IChemE), 29p (2001)

  50. Aspen Plus: AspenTech (www.aspentech.com) (1994–2009)

  51. HSC Chemistry 7.08, Outotec Research Oy (www.outotec.com) (1974–2010)

  52. Geldermann, J., Treitz, M., Rentz, O.: Integrated technique assessment based on the pinch analysis approach for the design of production networks. Eur. J. Oper. Res. 171, 1020–1032 (2006)

    Article  MATH  Google Scholar 

  53. Spengler, T., Piichert, H., Penkuhn, T., Rentz, O.: Environmental integrated production and recycling management. Eur. J. Oper. Res. 97, 308–326 (1997)

    Article  MATH  Google Scholar 

  54. Mellor, W., Wright, E., Clift, R., Azapagic, A., Stevens, G.: A mathematical model and decision-support framework for material recovery, recycling and cascaded use. Chem. Eng. Sci. 57, 4697–4713 (2002)

    Article  Google Scholar 

  55. Hinderink, A.P., Kerkhof, F.P.J.M., Lie, A.B.K., De Swaan Arons, J., Van der Kooi, H.J.: Exergy analysis with a flowsheeting simulator I. Theory; calculating exergies of material streams. Chem. Eng. Sci. 51(20), 4693–4700 (1996)

    Article  Google Scholar 

  56. Alexander, B., Barton, G., Petrie, J., Romagnoli, J.: Process synthesis and optimisation tools for environmental design: methodology and structure. Comput. Chem. Eng. 24, 1195–1200 (2000)

    Article  Google Scholar 

  57. Reuter, M.A., Van Schaik, A., Ignatenko, O.: Fundamental limits for the recycling of end-of-life vehicles. Miner. Eng. 19(5), 433–449 (2006)

    Google Scholar 

  58. Reuter, M.A., Van Schaik, A.: Material and metal ecology, encyclopaedia of ecology (Editors-in-Chief: Sven Erik Jorgensen and Brian D. Fath), 1st edn, pp. 2247–2260. Elsevier, BV, Oxford (2008)

  59. Reuter, M.A., Van Schaik, A.: Thermodynamic metrics for measuring the “sustainability” of design for recycling. J. Metals 60(8), 39–46 (2008)

    Google Scholar 

  60. Reuter, M.A., Van Schaik, A.: Linkages of sustainability. In: Graedel, T.E., van der Voet, E. (eds.) Ernst Strüngmann Forum Report, 532p., 4, pp. 149–162. MIT Press, Cambridge, MA, USA (2009)

  61. Van Schaik, A., Reuter, M.A.: The time-varying factors influencing the recycling rate of products, resources. Conserv. Recycl. 40(4), 301–328 (2004)

    Article  Google Scholar 

  62. Van Schaik, A., Reuter, M.A., Heiskanen, K.: The influence of particle size reduction and liberation on the recycling rate of end-of-life vehicles. Miner. Eng. 17, 331–347 (2004)

    Article  Google Scholar 

  63. Van Schaik, A., Reuter, M.A.: The use of fuzzy rule models to link automotive design to recycling rate calculation. Miner. Eng. 20, 875–890 (2007)

    Article  Google Scholar 

  64. Van Schaik, A., Reuter, M.A.: Dynamic modelling of e-waste recycling system performance based on product design. Miner. Eng. 23, 192–210 (2010)

    Article  Google Scholar 

  65. Ignatenko, O., Van Schaik, A., Reuter, M.A.: Exergy as a tool for evaluation of the resource efficiency of recycling systems. Miner. Eng. 20, 862–874 (2007)

    Article  Google Scholar 

  66. Sodhi, M.S., Reimer, B.: Models for recycling electronics end-of-life products. OR Spektrum 23, 97–115 (2001)

    Article  MATH  Google Scholar 

  67. Chancerel, P., Rotter, S.: Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manage. 29, 2336–2352 (2009)

    Article  Google Scholar 

  68. Kahhat, R., Kim, J., Xu, M., Allenby, B., Williams, E., Zhang, P.: Exploring E-waste management systems in the United States. Resour. Conserv. Recycl. 52, 955–964 (2008)

    Article  Google Scholar 

  69. Nnorom, I.C., Osibanjo, O.: Overview of electronic waste (E-waste) management practices and legislations, and their poor applications in the developing countries. Resour. Conserv. Recycl. 52, 843–858 (2008)

    Article  Google Scholar 

  70. Ruhrberg, M.: Assessing the recycling efficiency of copper from end-of-life products in Western Europe. Resour. Conserv. Recycl. 48, 141–165 (2006)

    Article  Google Scholar 

  71. Den Boer, J., Den Boer, E., Jager, J.: LCA-IWM: a decision support tool for sustainability assessment of waste management systems. Waste Manage. 27, 1032–1045 (2007)

    Article  Google Scholar 

  72. Park, P.-J., Tahara, K., Jeong, I.-T., Lee, K.: Comparison of four methods for integrating environmental and economic aspects in the end-of-life stage of a washing machine. Resour. Conserv. Recycl. 48, 71–85 (2006)

    Article  Google Scholar 

  73. Lu, Q., Williams, J.A.S., Posner, M., Bonawi-tan, W., Qu, X.: Model-based analysis of capacity and service fees for electronics recyclers. J. Manuf. Syst. 25(1), 45–57 (2006)

    Article  Google Scholar 

  74. Schmidt, M.: A production-theory-based framework for analyzing recycling systems in the E-waste sector. Environ. Impact Assess. Rev. 25, 505–524 (2005)

    Article  Google Scholar 

  75. Thomas, B., McDougall, F.: International expert group on life cycle assessment for integrated waste management. J. Clean. Prod. 13, 321–326 (2005)

    Article  Google Scholar 

  76. Davis, C., Nikolic, I., Dijkema, G.P.J.: Integration of life cycle assessment into agent-based modeling: toward informed decisions on evolving infrastructure systems. J. Ind. Ecol. 13(2), 306–325 (2009)

    Article  Google Scholar 

  77. Beigl, P., Lebersorger, S., Salhofer, S.: Modelling municipal solid waste generation: a review. Waste Manage. 28, 200–214 (2008)

    Article  Google Scholar 

  78. Vehmas, J., Luukkanen, J., Kaivo-oja, J.: Linking analyses and environmental Kuznets curves for aggregated material flows in the EU. J. Clean. Prod. 15, 1662–1673 (2007)

    Article  Google Scholar 

  79. Ayres, R.U.: Metals recycling: economic and environmental implications. Resour. Conserv. Recycl. 21, 145–173 (1997)

    Article  Google Scholar 

  80. Van der Voet, E., Van Oers, L., Nikolic, I.: Dematerialization, not just a matter of weight. J. Ind. Ecol. 8(4), 121–137 (2005)

    Article  Google Scholar 

  81. Hu, C., Han, X., Li, Z., Zhang, C.: Comparison of CO2 emission between COREX and blast furnace iron-making system. J. Environ. Sci. Supplement, S116–S120 (2009)

  82. Leczo, T.: HIsmelt® technology: the future of ironmaking. Iron & Steel Technology, March, pp. 33–39 (2009)

  83. Kepplinger, W.L.: Actual state of smelting-reduction processes in ironmaking. Stahl und Eisen 129(7), 43–51 (2009)

    Google Scholar 

  84. Orth, A., Anastasijevic, N., Eichberger, H.: Low CO2 emission technologies for iron and steelmaking as well as titania slag production. Miner. Eng. 20, 854–861 (2007)

    Article  Google Scholar 

  85. Gielen, D., Moriguchi, Y.: CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials. Energy Policy 30, 849–863 (2002)

    Article  Google Scholar 

  86. Outotec Ausmelt Ltd., Australia (www.outotec.com)

  87. Matlab & Simulink: The Language of Technical Computing. The MathWorks, Inc., Natick, MA, USA (www.mathworks.com) (1984–2007)

  88. Szargut, J.: Exergy Method. Technical and Ecological Applications, 192p. WitPress, Southampton, Boston (2005)

  89. Meskers, C., Reuter, M.A., Boin, U., Kvithyld, A.: A fundamental metric for metal recycling applied to coated magnesium. Metall. Trans. B 39(3), 500–517 (2008)

    Article  Google Scholar 

  90. Zvolinschi, A., Kjelstrup, S.: An indicator to evaluate the thermodynamic maturity of industrial process units in industrial ecology. J. Ind. Ecol. 12(2), 159–172 (2006)

    Article  Google Scholar 

  91. Ayres, R.U.: Eco-thermodynamics: economics and the second law. Ecol. Econ. 26, 189–209 (1998)

    Article  Google Scholar 

  92. SuperLightCar, 6th Framework EU Project, (www.superlightcar.com)—project leader Volkswagen (2005–2009)

  93. GaBi 4 LCA/LCE Software: PE International (www.gabi-software.com) (1989–2009)

  94. SimaPro 7.1 LCA Software: Pré Product Ecology Consultants (www.pre.nl) (1996–2009)

  95. Fagan, J.E., Reuter, M.A., Langford, K.J.: Dynamic performance metrics to assess sustainability and cost effectiveness of integrated urban water systems. Resour. Conserv. Recycl. 54, 719–736 (2010)

    Article  Google Scholar 

  96. European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste. OJ L365, Brussels, Belgium

  97. European Parliament and Council Directive 1999/31/EC of the European parliament and of the council of 26 April 1999 on the landfilling of waste. Official J. Eur. Commun. 1999; L182:1–19, Brussels Belgium

    Google Scholar 

  98. European Parliament and Council Directive 2000/53/EC of the European Parliament and the council of 18 September 2000 on end of life vehicles. Official J. Eur. Commun. 21-10-2000, Brussels Belgium

  99. European Parliament and Council Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official J. OJ L 37 of 13.02.2003, Brussels Belgium

  100. European Parliament and Council Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official J. OJ L 37 of 13.02.2003, Brussels Belgium

  101. EC, Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Non Ferrous Metals Industries December 2001. (Next Version Due 2010)

  102. Münster, M., Lund, H.: Comparing waste-to-Energy technologies by applying energy system analysis. Waste Manage. 30(7), 1251–1263 (2010)

    Article  Google Scholar 

  103. Pavlas, M., Touš, M., Bébar, L., Stehlík, P.: Waste to energy—an evaluation of the environmental impact. Appl. Thermal Eng., In press, (2010) http://dx.doi.org/10.1016/j.applthermaleng.2009.10.019

  104. Yang, Y., Pijnenborg, M.J.A., Reuter, M.A., Verwoerd, J.: Analysis of transport phenomena and combustion modelling of rotary kiln hazardous waste incinerators. Int. J. Prog. Comput. Fluid Dyn. 7(1), 25–39 (2007)

    Article  MATH  Google Scholar 

  105. Persson, K., Broström, M., Carlsson, J., Nordin, A., Backman, R.: High temperature corrosion in a 65 MW waste to energy plant. Fuel Process. Technol. 88, 1178–1182 (2007)

    Article  Google Scholar 

  106. Stehlik, P.: Contribution to advances in waste-to-energy technologies. J. Clean. Prod. 17, 919–931 (2009)

    Article  Google Scholar 

  107. Cui, J., Forssberg, E.: Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. B99, 243–263 (2003)

    Article  Google Scholar 

  108. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage. 29, 2625–2643 (2009)

    Article  Google Scholar 

  109. Fraunholcz, N.: Separation of waste plastics by froth flotation—a review, Part I. Miner. Eng. 17, 261–268 (2004)

    Article  Google Scholar 

  110. Froelich, D., Maris, E., Haoues, N., Chemineau, L., Renard, H., Abraham, F., Lassartesses, R.: State of the art of plastic sorting and recycling: Feedback to vehicle design. Miner. Eng. 20, 902–912 (2007)

    Article  Google Scholar 

  111. Siddique, R., Khatib, J., Kaur, I.: Use of recycled plastic in concrete: a review. Waste Manage. 28, 1835–1852 (2008)

    Article  Google Scholar 

  112. Cui, J., Zhang, L.: Metallurgical recovery of metals from electronic waste: a review. J. Hazard. Mater. 158, 228–256 (2008)

    Article  Google Scholar 

  113. Hoang, J., Reuter, M.A., Matusewicz, R., Hughes, S., Piret, N.: Top submerged lance direct zinc smelting. Miner. Eng. 22, 742–751 (2009)

    Article  Google Scholar 

  114. Floyd, J.M.: Converting an idea into a worldwide business commercializing smelting technology. Metall. Trans. B 36(5), 557–575 (2005)

    Article  Google Scholar 

  115. Helsen, L., Van den Bulck, E., Hery, J.S.: Total recycling of CCA treated wood waste by low-temperature pyrolysis. Waste Manage. 18, 571–578 (1998)

    Article  Google Scholar 

  116. Xua, J., Thomas, H.R., Francis, R.W., Lumb, K.R., Wang, J., Liang, B.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sourc. 177, 512–527 (2008)

    Article  Google Scholar 

  117. Müller, T., Friedrich, B.: Development of a recycling process for nickel-metal hydride batteries. J. Power Sour. 158, 1498–1509 (2006)

    Article  Google Scholar 

  118. Bernardes, A.M., Espinosa, D.C.R., Tenório, J.A.S.: Recycling of batteries: a review of current processes and technologies. J. Power Sour. 130, 291–298 (2004)

    Article  Google Scholar 

  119. Briffaerts, K., Spirinckx, C., Van der Linden, A., Vrancken, K.: Waste battery treatment options: comparing their environmental performance. Waste Manage. 29, 2321–2331 (2009)

    Article  Google Scholar 

  120. Genaidy, A.M., Sequeira, R., Tolaymat, T., Kohler, J., Rinder, M.: Evidence-based integrated environmental solutions for secondary lead smelters: Pollution prevention and waste minimization technologies and practices. Sci. Total Environ. 407, 3239–3268 (2009)

    Article  Google Scholar 

  121. Sayilgan, E., Kukrer, T., Civelekoglu, G., Ferella, F., Akcil, A., Veglio, F., Kitis, M.: A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy 97, 158–166 (2009)

    Article  Google Scholar 

  122. Shent, H., Pugh, R.J., Forssberg, E.: A review of plastics waste recycling and the flotation of plastics. Resour. Conserv. Recycl. 25, 85–109 (1999)

    Article  Google Scholar 

  123. Guo, J., Guo, J., Xu, Z.: Recycling of non-metallic fractions from waste printed circuit boards: a review. J. Hazard. Mater. doi:10.1016/j.jhazmat.2009.02.104 (2008)

  124. Plastics Europe, The Compelling Facts about Plastics 2007: An analysis of plastics production, demand and recovery for 2007 in Europe. Plastics Europe, Brussels, 2008 (www.plasticseurope.org)

  125. Tam, V.W.Y., Tam, C.M.: A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 47, 209–221 (2006)

    Article  Google Scholar 

  126. Gay, S.L.: A liberation model for comminution based on probability theory. Miner. Eng. 14, 525–534 (2004)

    Article  Google Scholar 

  127. Heiskanen, K.: Particle Classification. Chapman and Hall, London, Great Britain. ISBN 0 412 493004 (1993)

  128. King, R.P.: Modeling and Simulation of Mineral Processing Systems. Butterworth-Heinemann Publications, Oxford, Great Britain. ISBN 0750648848 (2001)

  129. FACTSage 6.1: FactSageTM (www.factsage.com) (2009)

  130. Scheepers, E., Adema, A.T., Yang, Y., Reuter, M.A.: The development of a CFD model of a submerged arc furnace for phosphorus production. Miner. Eng. 19(10), 1115–1125 (2006)

    Article  Google Scholar 

  131. Binder, C.R., Van der Voet, E., Rosselot, K.S.: Implementing the results of material flow analysis progress and challenges. J. Ind. Ecol. 13(5), 643–649 (2009)

    Article  Google Scholar 

  132. Georgiadis, P., Besiou, M.: Sustainability in electrical and electronic equipment closed-loop supply chains: a system dynamics approach. J. Clean. Prod. 16, 1665–1678 (2008)

    Article  Google Scholar 

  133. Schmidt, M.: A production-theory-based framework for analyzing recycling systems in the E-waste sector. Environ. Impact Assess. Rev. 25, 505–524 (2005)

    Article  Google Scholar 

  134. Uryu, T., Yoshinaga, J., Yanagisawa, Y.: Environmental fate of gallium arsenide semiconductor disposal: a case study of mobile phones. J. Ind. Ecol. 7(2), 103–112 (2003)

    Article  Google Scholar 

  135. Rechberger H., Brunner, P.H.: A new, entropy based method to support waste and resource management decisions. Environ. Sci. Technol. 36, 809–816 (2002)

    Google Scholar 

  136. Klaasen, B., Jones, P-T., Durinck, D., DeWulf, J., Wollants, P., Blanpain, B.: Exergy-Based Efficiency Analysis of Pyrometallurgical Processes, Metallurgical Transactions B, online August (2010)

  137. Mathieux, F., Froelich, D., Moszkowicz, P.: ReSICLED: a new recovery-conscious design method for complex products based on a multi-criteria assessment of the recoverability. J. Clean. Prod. 16, 277–298 (2008)

    Article  Google Scholar 

  138. Ljungberg, L.Y.: Materials selection and design for development of sustainable products. Mater. Des. 28, 466–479 (2007)

    Article  Google Scholar 

  139. Diwekar, U.: Green process design, industrial ecology, and sustainability: a systems analysis perspective. Resour. Conserv. Recycl. 44, 215–235 (2005)

    Article  Google Scholar 

  140. Dewulf, J., Van Langenhove, H.: Integrating industrial ecology principles into a set of environmental sustainability indicators for technology assessment. Resour. Conserv. Recycl. 43, 419–432 (2005)

    Article  Google Scholar 

  141. Dornburg, V., Faaij, A.P.C., Meuleman, B.: Optimising waste treatment systems Part A: methodology and technological data for optimising energy production and economic performance. Resour. Conserv. Recycl. 49, 68–88 (2006)

    Article  Google Scholar 

  142. Dewulf, J., Van der Vorst, G., Denturck, K., Van Langenhove, H., Ghyoot, W., Tytgat, J., Vandeputte, K.: Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recycl. 54, 229–234 (2010)

    Article  Google Scholar 

  143. Goede, M., Stehlin, M., Rafflenbeul, L., Kopp, G., Beeh, E.: Super light car-lightweight construction thanks to a multi-material design and function integration. Eur. Transp. Res. Rev. 1, 5–10 (2008)

    Article  Google Scholar 

  144. Braungart, M., McDonough, W., Bollinger, A.: Cradle-to-Cradle design: creating healthy emissions a strategy for eco-effective product and system design. J. Clea. Prod. 15, 1337–1348 (2007)

    Article  Google Scholar 

  145. Fiksel, J.: Designing resilient, sustainable systems. Environ. Sci. Technol. 37, 5330–5339 (2003)

    Article  Google Scholar 

  146. Mihelcic, J., Crittenden, J.C., Small, M.J., Shonnard, D.R., Hokanson, D.R., Zhang, Q., Chen, H., Sorby, S.A., James, V.U., Sutherland, J.W., Schnoor, J.L.: Sustainability science and engineering: the emergence of a new metadiscipline. Environ. Sci. Technol. 37, 5314–5324 (2003)

    Article  Google Scholar 

  147. Nonaka, I., Takeuchi, H.: The knowledge-creating company—how Japanese companies create the dynamics of innovation, 284p. Oxford University Press, New York (1995)

  148. Bartelmus, P.: Dematerialization and capital maintenance: two sides of the sustainability coin. Wuppertal Institut für Klima, Umwelt, Energie GmbH, Report 120, 31p. ISSN 0949-5266 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, M.A. Limits of Design for Recycling and “Sustainability”: A Review. Waste Biomass Valor 2, 183–208 (2011). https://doi.org/10.1007/s12649-010-9061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9061-3

Keywords

Navigation