Skip to main content
Log in

The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P)

  • Published:
The journal of nutrition, health & aging

Abstract

Objective

To determine if sarcopenia modulates the response to a physical activity intervention in functionally limited older adults.

Design

Secondary analysis of a randomized controlled trial.

Setting

Three academic centers.

Participants

Elders aged 70 to 89 years at risk for mobility disability who underwent dualenergy x-ray absorptiometry (DXA) for body composition at enrollment and follow-up at twelve months (N = 177).

Intervention

Subjects participated in a physical activity program (PA) featuring aerobic, strength, balance, and flexibility training, or a successful aging (SA) educational program about healthy aging.

Measurements

Sarcopenia as determined by measuring appendicular lean mass and adjusting for height and total body fat mass (residuals method), Short Physical Performance Battery score (SPPB), and gait speed determined on 400 meter course.

Results

At twelve months, sarcopenic and non-sarcopenic subjects in PA tended to have higher mean SPPB scores (8.7±0.5 and 8.7±0.2 points) compared to sarcopenic and non-sarcopenic subjects in SA (8.3±0.5 and 8.4±0.2 points, p = 0.24 and 0.10), although the differences were not statistically significant. At twelve months, faster mean gait speeds were observed in PA: 0.93±0.4 and 0.95±0.03 meters/second in sarcopenic and non-sarcopenic PA subjects, and 0.89±0.4 and 0.91±0.03 meters/second in sarcopenic and non-sarcopenic SA subjects (p = 0.98 and 0.26), although not statistically significant. There was no difference between the sarcopenic and non-sarcopenic groups in intervention adherence or number of adverse events.

Conclusion

These data suggest that older adults with sarcopenia, who represent a vulnerable segment of the elder population, are capable of improvements in physical performance after a physical activity intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boirie Y (2009) Physiopathological mechanism of sarcopenia. J Nutr Health Aging 13:717–723

    Article  CAS  PubMed  Google Scholar 

  2. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896

    Article  PubMed  Google Scholar 

  3. Janssen I (2006) Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc 54:56–62

    Article  PubMed  Google Scholar 

  4. Pahor M, Blair SN, Espeland M et al (2006) Effects of a physical activity intervention on measures of physical performance: Results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci 61:1157–1165

    Article  PubMed  Google Scholar 

  5. Fiatarone MA, O’Neill EF, Ryan ND et al (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. New Engl J Med 330:1769–1775

    Article  CAS  PubMed  Google Scholar 

  6. Galvao DA, Taaffe DR, Spry N et al (2010) Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol 28:340–347

    Article  CAS  PubMed  Google Scholar 

  7. Fielding RA, Vellas B, Evans WJ (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  8. Rejeski WJ, Fielding RA, Blair SN et al (2005) The lifestyles interventions and independence for elders (LIFE) pilot study: design and methods. Contemp Clin Trials 26:141–154

    Article  PubMed  Google Scholar 

  9. Newman AB, Simonsick EM, Naydeck BL et al (2006) Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. J Am Med Assoc 295:2018–2026

    Article  CAS  Google Scholar 

  10. Andreoli A, Scalzo G, Masala S et al (2009) Body composition assessment by dualenergy X-ray absorptiometry (DXA). Radiol Med Mar 114:286–300

    Article  CAS  Google Scholar 

  11. Borg GA (1982) Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise 14:377–381

    CAS  PubMed  Google Scholar 

  12. Newman AB, Kupelian V, Visser M et al (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc Nov 51:1602–1609

    Article  Google Scholar 

  13. Abellan van Kan G, Andre E, Bischoff-Ferrari HA et al (2009) Carla Task Force on Sarcopenia: propositions for clinical trials. J Nutr Health Aging 13:700–707

    Article  CAS  PubMed  Google Scholar 

  14. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  15. Guralnik JM, Simonsick EM, Ferrucci L et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–M94

    Article  CAS  PubMed  Google Scholar 

  16. Newman AB, Haggerty CL, Kritchevsky SB et al (2003) Walking performance and cardiovascular response: associations with age and morbidity—the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 58: M715–M720

    Article  Google Scholar 

  17. Chang, M. Cohen-Mansfield J, Ferrucci L et al (2004) Incidence of loss of ability to walk 400 meters in a functionally limited older population. J Am Geriatr Soc 52: 2094–2098

    Article  PubMed  Google Scholar 

  18. Rolland YM, Cesari M, Miller ME et al (2004) Reliability of the 400 meter usual pace walk test as an assessment of mobility limitation in older adults. J Am Geriatr Soc 52: 972–976

    Article  PubMed  Google Scholar 

  19. Pu CT, Johnson MT, Forman DE et al (2001) Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol 90:2341–2350

    CAS  PubMed  Google Scholar 

  20. Reid KF, Callahan DM, Carabello RJ et al (2008) Lower extremity power training in elderly subjects with mobility limitations: a randomized controlled trial. Aging Clin Exp Res 20:337–343

    Article  PubMed Central  PubMed  Google Scholar 

  21. Timonen L, Rantanen T, Ryynänen OP et al (2002) A randomized controlled trial of rehabilitation after hospitalization in frail older women: effects on strength, balance and mobility. Scand J Med Sci Sports 12:186–192

    Article  PubMed  Google Scholar 

  22. Regensteiner JG, Meyer TJ, Krupski WC, Cranford LS, Hiatt WR (1997) Hospital vs home-based exercise rehabilitation for patients with peripheral arterial occlusive disease. Angiology 48:291–300.

    Article  CAS  PubMed  Google Scholar 

  23. Patterson RB, Pinto B, Marcus B et al (1997) Value of a supervised exercise program for the therapy of arterial claudication. J Vasc Surg 25:312–319

    Article  CAS  PubMed  Google Scholar 

  24. Nelson ME, Layne JE, Bernstein MJ et al (2004) The effects of multidimensional home-based exercise on functional performance in elderly people. J Gerontol A Biol Sci Med Sci 59:154–160

    Article  PubMed  Google Scholar 

  25. Ettinger WH, Burns R, Messier SP et al (1997) A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA 277:25–31.

    PubMed  Google Scholar 

  26. Goodpaster BH, Park SW, Harris TB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61:1059–1064

    Article  PubMed  Google Scholar 

  27. Clark DJ, Patten C, Reid KF et al (2011) Muscle performance and physical function are associated with voluntary rate of neuromuscular activation in older adults. J Gerontol A Biol Sci Med Sci 66:115–121

    Article  PubMed  Google Scholar 

  28. Leong B, Kamen G, Patten C, Burke JR (1999) Maximal motor unit discharge rates in the quadriceps muscles of older weight lifters. Med and Sci in Sports and Exercise 31:1638–1644

    Article  CAS  Google Scholar 

  29. Patten C, Kamen G, Rowland DM (2001) Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle and Nerve. 24:542–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine K. Liu or R. A. Fielding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.K., Leng, X., Hsu, F.C. et al. The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P). J Nutr Health Aging 18, 59–64 (2014). https://doi.org/10.1007/s12603-013-0369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-013-0369-0

Key word

Navigation