Skip to main content

Advertisement

Log in

Crops that feed the world 8: Potato: are the trends of increased global production sustainable?

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Potato is produced on all continents except Antarctica and is the world’s third most important food crop. Potato production has increased dramatically in developing countries in the past two decades, and has now overtaken that in the developed world, underlining the growing importance of potato as a staple food crop to meet the demands of increasing human populations. Potato is also an important source of starch. It has been adapted for cultivation in a wide range of environments and, with the availability of significant germplasm resources, the potential to further exploit its natural biodiversity is considerable. Potato yields vary considerably across the world, with the lowest being in Sub-Saharan Africa; <75 % of the global average and <30 % of the top producing regions. Many factors contribute to this variation, providing targets for improved agronomic practice and a stimulus to improve varieties to increase production in the poorest-yielding countries. The ability to adapt potato to withstand multiple biotic and abiotic stresses is critical to its future growth as a major food source. In current breeding efforts, strong emphasis is being placed on these traits in attempts to better equip the potato crop in a changing climate. The genomics era is accelerating our understanding of the key genes and mechanisms underlying potato development, physiology, water and nutrient use efficiency and resistance to biotic and abiotic stresses. Genomics technologies provide the potential for more rapid, marker-assisted breeding strategies, and afford the opportunity for biotechnological approaches, particularly in the case of major gene resistance to pests and diseases. Continued review of GM policies and regulations, and associated social and political opinions, are needed to guide and determine the safest and most productive routes to potato improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achenbach, U., Paulo, J., Ilarionova, E., Lubeck, J., Strahwald, J., Tacke, E., Hofferbert, H. R., & Gebhardt, C. (2009). Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V. Theoretical and Applied Genetics, 118, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. St. Paul: APS Press.

    Google Scholar 

  • Almekinders, C. J. M., Chilver, A. S., & Renia, H. M. (1996). Current status of the TPS technology in the world. Potato Research, 39, 289–303.

    Article  Google Scholar 

  • Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G., & Grafius, E. (2008). Colorado Potato Beetle resistance to insecticides. American Journal of Potato Research, 85, 395–413.

    Article  Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.

    Article  Google Scholar 

  • Anon. (1998). Council Directive 98/57/EC on the control of Ralstonia solanacearum (Smith) Yabuuchi et al. Official Journal of the European Communities, L235, 1–39.

    Google Scholar 

  • Arce, P., Moreno, M., Gutierrez, M., et al. (1999). Enhanced resistance to bacterial infection by Erwinia carotovora subsp atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. American Journal of Potato Research, 76, 169–177.

    Article  CAS  Google Scholar 

  • Autrique, A., & Potts, M. J. (1987). The influence of mixed cropping on the control of potato bacterial wilt (Pseudomonas solanacearum). Annals of Applied Biology, 111, 125–133.

    Article  Google Scholar 

  • Bakker, E., Achenbach, U., Bakker, J., van Vliet, J., Peleman, J., Segers, B., van der Heijden, S., van der Linde, P., Graveland, R., Hutten, R., van Eck, H., Coppoolse, E., van der Vossen, E., Bakker, J., & Goverse, A. (2004). A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics, 109, 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Barker, H., & Dale, M. F. B. (2006). Resistance to viruses in potato. In G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 341–366). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Barker, H., Reavy, B., Kumar, A., Webster, K. D., & Mayo, M. A. (1992). Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus – similarities with a type of host gene-mediated resistance. Annals of Applied Biology, 120, 55–64.

    Article  Google Scholar 

  • Battisti, & Naylor. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Bellom, M. R., & Reeves, J. (Eds.). (2002). Quantitative analysis of data from participatory methods in plant breeding. Mexico: CIMMYT.

    Google Scholar 

  • Berrios, D. E., & Rubirigi, A. (1993). Integrated control of bacterial wilt in seed production by the Burundi National Potato Program. In: G. L. Hartman, A. C. Hayward (Eds.), Bacterial Wilt. ACIAR Proc. No 45, (pp. 284–288). Canberra, Australia.

  • Birch, P. R. J., Boevink, P. C., Gilroy, E. M., Hein, I., Pritchard, L., & Whisson, S. C. (2008). RXLR effectors: delivery, functional redundancy and durable disease resistance. Current Opinion in Plant Biology, 11, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Birch, P. R. J., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.

    Article  PubMed  CAS  Google Scholar 

  • Birch, P. R. J., & Whisson, S. C. (2001). Phytophthora infestans enters the genomic era. Molecular Plant Pathology, 2, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Black, W. (1970). The nature and inheritance of field resistance to late blight (Phytophthora infestans) in potatoes. American Journal of Potato Research, 47, 279–288.

    Article  Google Scholar 

  • Blennow, A., Bay-Smidt, A. M., Leonhardt, P., Bandsholm, O., & Madsen, H. M. (2003). Starch paste stickiness is a relative native starch selection criterion for wet-end paper manufacturing. Starch, 55, 381–389.

    Article  CAS  Google Scholar 

  • Bochre, K. K., & Papdiwal, P. B. (2011). Bacterial diseases of vegetables from Aurangabad district. Flora and Fauna (Jhansi), 17, 21–24.

    Google Scholar 

  • Bonierbale, M. W., Plaisted, R. L., & Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120, 1095–1103.

    PubMed  CAS  Google Scholar 

  • Bonierbale, M. W., Simon, R., Zhang, D. P., Ghislain, M., Mba, C., & Li, X.-Q. (2003). Genomics and molecular breeding for root and tuber crop improvement. In H. J. Newbury (Ed.), Plant molecular breeding (pp. 216–253). Oxford: Blackwell.

    Google Scholar 

  • Boukhris-Bouhachem, S., Rouze-Jouan, J., Souissi, R., Glais, L., & Hulle, M. (2011). Transmission efficiency of the strain PVYNTN by commonly captured aphids in Tunisian potato fields. Plant Pathology Journal, 10, 22–28.

    Article  Google Scholar 

  • Bradeen, J. M., & Kole, C. (Eds.). (2011). Genetics, genomics and breeding of potato. Enfield, NH: CRC Press and Science Publishers.

  • Bradshaw, J. E. (2005). Potato improvement at SCRI by multitrait genotypic recurrent selection. In: Proc. IX Simposio de Atualizacao em Genetica e Melhoramento de Plantas 25 -26 August 2005, (pp. 9–28). Lavras, Brasil: Universidade Federal de Lavras.

  • Bradshaw, J. E. (2006). Genetics of agrihorticultural traits. In J. Gopal & S. M. P. Khurana (Eds.), Handbook of potato production, improvement and postharvest management. New York: The Haworth Press.

    Google Scholar 

  • Bradshaw, J. E., Dale, M. F. B., & Mackay, G. R. (2003). Use of mid-parent values and progeny tests to increase the efficiency of potato breeding for combined processing quality and disease and pest resistance. Theoretical and Applied Genetics, 107, 36–42.

    PubMed  CAS  Google Scholar 

  • Bradshaw, J. E., Dale, M. F. B., Swan, G. E. L., Todd, D., & Wilson, R. N. (1998). Early-generation selection between and within pair crosses in a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 97, 1331–1339.

    Article  Google Scholar 

  • Bradshaw, J. E., Lees, A. K., & Stewart, H. E. (2000). How to breed potatoes for resistance to fungal and bacterial diseases. Plant Breeding Seed Science, 44, 3–20.

    Google Scholar 

  • Bradshaw, J. E., & Mackay, G. R. (1994). Breeding strategies for clonally propagated potatoes. In J. E. Bradshaw & G. R. MacKay (Eds.), Potato genetics (pp. 467–497). Wallingford: CAB International.

    Google Scholar 

  • Bradshaw, J. E., Pande, B., Bryan, G. J., Hackett, C. A., McLean, K., Stewart, H. E., & Waugh, R. (2004). Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics, 168, 983–995.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, J. E., & Ramsay, G. (2005). Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica, 146, 9–19.

    Article  Google Scholar 

  • Bradshaw, J. E., Stewart, H. E., Wastie, R. L., Dale, M. F. B., & Phillips, M. S. (1995). Use of seedling progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 90, 899–905.

    Article  Google Scholar 

  • Bradshaw, J. E., Todd, D., & Wilson, R. N. (2000). Use of tuber progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 100, 772–781.

    Article  Google Scholar 

  • Brown, C. R. (1993). Outcrossing rate in cultivated autotetraploid potato. American Potato Journal, 70, 725–734.

    Article  Google Scholar 

  • Brown, C. R. (2005). Antioxidants in potato. American Journal of Potato Research, 82, 163–172.

    Article  CAS  Google Scholar 

  • Bryan, G. J., McLean, K., Bradshaw, J. E., De Jong, W. S., Phillips, M., Castelli, L., & Waugh, R. (2002). Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theoretical and Applied Genetics, 105, 68–77.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, G. J., McLean, K., Pande, B., Purvis, A., Hackett, C. A., Bradshaw, J. E., & Waugh, R. (2004). Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Molecular Breeding, 14, 105–116.

    Article  CAS  Google Scholar 

  • Bukasov, S. M. (1971). Cultivated potato species. In: S. M. Bukasov (Ed.), Flora of cultivated plants, Vol 9 (pp. 5–40). Kolos, Leningrad, Russia.

  • Burton, W. G. (1989). The potato. London: Longman.

    Google Scholar 

  • CABI/EPPO. (1999). Distribution maps of plant diseases. Wallingford: CAB International.

    Google Scholar 

  • Caligari, P. D. S. (1992). Breeding new varieties. In P. Harris (Ed.), The potato crop (pp. 334–372). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Carroll, C. P. (1982). A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. Journal of Agricultural and Food Chemistry, 99, 631–640.

    Google Scholar 

  • Carroll, C. P., & De Maine, M. J. (1989). The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Research, 32, 447–456.

    Article  Google Scholar 

  • Chen, X., Salamini, F., & Gebhardt, C. (2001). A potato molecular-function map for carbohydrate metabolism and transport. Theoretical and Applied Genetics, 102, 284–295.

    Article  CAS  Google Scholar 

  • Collins, A., Milbourne, D., Ramsay, L., Meyer, R., Chatot-Balandras, C., Oberhagemann, P., De Jong, W., Gebhardt, C., Bonnel, E., & Waugh, R. (1999). QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Molecular Breeding, 5, 387–398.

    Article  CAS  Google Scholar 

  • Colton, L. M., Groza, H. I., Wielgus, S. M., & Jiang, J. (2006). Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science, 46, 589–594.

    Article  CAS  Google Scholar 

  • Cromme, N., Prakash, A. B., Lutaladio, N., & Exeta, F (2009). Strengthening the potato value chains: technical and policy options for developing countries. Food and Agriculture Organisation of the United Nations. Rome: FAO.

  • Czajkowski, R. L., de Boer, W. J., van Veen, J. A., & van der Wolf, J. M. (2012). Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathology, 61, 677–688.

    Article  Google Scholar 

  • Czajkowski, R., Pérombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2012). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60, 999–1013.

    Article  Google Scholar 

  • Dale, M. F. B., & Mackay, G. R. (1994). Inheritance of table and processing quality. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 285–315). Wallingford: CAB International.

    Google Scholar 

  • Davies, H. V. (2002). Commercial developments with transgenic potato. In V. Valpuesta (Ed.), Fruit and vegetable biotechnology (pp. 222–249). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • de Boer, J. M., Borm, T. J. A., Jesse, T., Brugmans, B., Tang, X., Bryan, G. J., van Eck, H. J., & Visser, R. R. F. (2011). A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome. BMC Genomics, 12, 594.

    Article  PubMed  CAS  Google Scholar 

  • De Bokx, J. A., & van der Want, J. P. H. (1987). Viruses of potatoes and seed-potato production (2nd Edition, pp. 259). Wageningen.

  • D’hoop, B. B., Paulo, M., Kowitwanich, K., Sengers, M., Visser, R. G., van Eck, H. J., & van Eeuwijk, F. A. (2010). Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics, 121, 1151–1170.

    Article  PubMed  Google Scholar 

  • D’hoop, B. B., Paulo, M. J., Mank, R. A., van Eck, H. J., & van Eeuwijk, F. A. (2008). Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica, 161, 47–60.

    Article  Google Scholar 

  • Diaz de la Garza, R., Quinlivan, E. P., Klaus, S. M., Basset, G. J., Gregory, J. F. III, & Hanson, A. D. (2004) Folate biofortification in tomatoes by engineering the pterin branch of folate synthesis. Proceedings of the National Academy of Science USA, 101, 13720–13725.

  • Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One, 2, e350.

    Article  PubMed  CAS  Google Scholar 

  • Dong, F., Song, S., Naess, S. K., Helgeson, J. P., Gebhardt, C., & Jiang, J. (2000). Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theoretical and Applied Genetics, 101, 1001–1007.

    Article  CAS  Google Scholar 

  • Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Douches, D. S., & Grafius, E. J. (2005). Transformation for insect resistance. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 235–266). Enfield: Science Publishers, Inc.

    Google Scholar 

  • Duarte, V., De Boer, S. H., Ward, L. J., & De Oliveira, A. M. R. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96, 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Ducreux, L. J., Morris, W. L., Hedley, P. E., Shepherd, T., Davies, H. V., Millam, S., & Taylor, M. A. (2005). Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Journal of Experimental Botany, 56, 81–89.

    PubMed  CAS  Google Scholar 

  • During, K. (1996). Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Molecular Breeding, 2, 297–305.

    Article  Google Scholar 

  • Elphinstone, J. G. (2005). The current bacterial wilt situation: A global overview. In: C. Allen, P. Prior, & A. C. Hayword (Eds.), Bacterial wilt disease and the Ralstonia solanacearum complex (pp. 9–28).

  • Elphinstone, J. G., Stanford, H., & Stead, D. E. (1998). Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara and associated irrigation water. In P. Prior, C. Allen, & J. G. Elphinstone (Eds.), Bacterial wilt disease: molecular and ecological aspects (pp. 133–139). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Evans, K., Franco, J., & De Scurrah, M. M. (1975). Distribution of species of potato cyst nematodes in South America. Nematologica, 21, 365–369.

    Article  Google Scholar 

  • Evans, K., & Rowe, J. (1998). Distribution and economic importance. In S. B. Sharma (Ed.), The cyst nematodes (pp. 1–30). London: Chapman & Hall.

    Google Scholar 

  • Ewing. (1981). Heat-stress and the tuberization stimulus. American Potato Journal, 58, 31–49.

    Article  Google Scholar 

  • Fabeiro, C., Olalla, F. M. D., & de Juan, J. A. (2001). Yield and size of deficit irrigated potatoes. Agricultural Water Management, 48, 255–266.

    Article  Google Scholar 

  • FAO (2012). Food and Agriculture Organisation of the United Nations, Land Resources. http://www.fao.org/nr/land/databasesinformation-systems/en/.

  • Farag, N. S., Fawzi, F. G., Elsaid, S. I. A., et al. (1986). Streptomycin in relation to potato brown rot control. Acta Phytopathologica et Entomologica Hungaria, 21, 115–122.

    CAS  Google Scholar 

  • Farag, N. S., Lashin, S. M., Abdel-All, R. S., et al. (1982). Antibiotics and control of potato black leg and brown rot diseases. Agricultural Research Review, 60, 149–166.

    Google Scholar 

  • Felcher, K. J., Coombs, J. J., Massa, A. N., Hansey, C. N., Hamilton, J. P., Veilleux, R. E., Buell, C., & Douches, D. S. (2012). Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One, 7, 4.

    Article  CAS  Google Scholar 

  • Fereres, E., Orgaz, F., & Gonzalez-Dugo, V. (2011). Reflections on food security under water scarcity. Journal of Experimental Botany, 62, 4079–4086.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, T. R., Byerlee, D., Edmeades, G. O. (2011). Can technology deliver on the yield challenge to 2050? (ftp://ftp.fao.org/docrep/fao/012/ak977e/ak977e00.pdf).

  • Foster, S. P., Denholm, I., & Devonshire, A. L. (2000). The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection, 19, 873–879.

    Article  CAS  Google Scholar 

  • Franco, J., & Evans, K. (1978). Multiplication of some South American and European populations of potato cyst nematodes on potatoes possessing the resistance genes H1, H2 and H3. Plant Pathology, 27, 1–6.

    Article  Google Scholar 

  • French, E. R. (1985). Multiple disease resistance in potato cultivars with Solanum phureja and Solanum demissum background. Phytopathology, 75, 1288.

    Google Scholar 

  • Fry, W. E. (2008). Phytophthora infestans the plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385–402.

  • Ganal, M. W., Bonierbale, M. W., Roeder, M. S., Park, W. D., & Tanksley, S. D. (1991). Genetic and physical mapping of the patatin genes in potato and tomato. Molecular and General Genetics, 225, 501–509.

    PubMed  CAS  Google Scholar 

  • Garcia, R., Garcia, A., & Delgado, L. (1999). Distribucion, incidencia y variabilidad de Ralstonia solanacearum, agente causal de la marchitez bacteriana de la papa en el estado Merida, Venezuela. Bioagro, 11, 12–23.

    Google Scholar 

  • Gaur, P. C., & Pandey, S. K. (2000). Potato improvement in sub-tropics. In S. M. P. Khurana, G. S. Shekhawat, B. P. Singh, & S. K. Pandey (Eds.), Potato, global research & development (pp. 52–63). Shimla: Indian Potato Association.

    Google Scholar 

  • Gebhardt, C., Bellin, D., Henselewski, H., Lehmann, W., Schwarzfischer, J., & Valkonen, J. P. T. (2006). Marker-assisted pyramidization of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 112, 1458–1464.

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufman, H., Thompson, R. D., Bonierbale, M. W., Ganal, M. W., Tanksley, S. D., & Salamini, F. (1991). RFLP maps of potato and their alignment with the homeologous tomato genome. Theoretical and Applied Genetics, 83, 49–57.

    Article  Google Scholar 

  • Gebhardt, C., & Valkonen, J. P. T. (2001). Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 39, 79–102.

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M., & Stuber, K. (2003). Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. The Plant Journal, 34, 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., & Taylor, M. (2008). Metabolic engineering of carotenoid biosynthesis in higher plants. Trends in Biotechnology, 26, 139–145.

    Google Scholar 

  • Golmirzaie, A. M., Malagamba, P., & Pallais, N. (1994). Breeding potatoes based on true seed propagation. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 499–513). Wallingford: CAB International.

    Google Scholar 

  • Goodey, J. B. (1956). The susceptibility of potato varieties to infestation by the eelworms Ditylenchis destructor and D. dipsaci. Annals of Applied Biology, 44, 16–24.

    Article  Google Scholar 

  • Goodrich, C. E. (1863). The origination and test culture of seedling potatoes. Transactions of the New York State Agricultural Society, 23, 89–134.

    Google Scholar 

  • Graham, D. C., & Harper, P. C. (1966). Effect of inorganic fertilizers on the incidence of potato blackleg disease. Potato Research, 9, 141–145.

    CAS  Google Scholar 

  • Graham, J., Jones, D. A., & Lloyd, A. B. (1979). Survival of Pseudomonas solanacearum Race 3 in plant debris and in latently infected potato tubers. Ecology and Epidemiology, 69, 1100–1103.

    Google Scholar 

  • Granada, G. A., & Sequeira, L. (1983). Survival of Pseudomonas solanacearum in soil, rhizophere and plant roots. Canadian Journal of Microbiology, 29, 433–440.

    Article  Google Scholar 

  • Haas, B., et al. (2009). The genome sequence of the Irish famine pathogen Phytophthora infestans. Nature, 461, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Hackett, C. A., Bradshaw, J. E., & McNicol, J. W. (2001). Interval mapping of quantitative trait loci in autotetraploid species. Genetics, 159, 1819–1832.

    PubMed  CAS  Google Scholar 

  • Hanson, A. D., & Gregory, J. F. III (2002). Synthesis and turnover of folates in plants. Current Opinion in Plant Biology, 5, 244–249.

  • Hartman, G. L., & Elphinstone, J. G. (1992). Advances in the control of Pseudomonas solanacearum race 1 in major food crops. In: A. C. Hayward & G. L. Hartman (Eds.), Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum (pp. 157–177).

  • Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52, 249–264.

    Article  Google Scholar 

  • Hawkes, J. G. (1990). The potato: evolution biodiversity and genetic resources. Oxford: Belhaven Press. Smithsonian Inst Pr; Subsequent edition (May 1990).

    Google Scholar 

  • Hawkes, J. G. (1992). In: P. M. Harris (Ed.), The potato crop: the scientific basis for improvement (pp. 1–12). London: Chapman and Hall.

  • Hawkes, J. G. (1994). Origins of cultivated potatoes and species relationships. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 3–42). Wallingford: CAB International.

    Google Scholar 

  • Haynes, K. G., & Lu, W. (2005). Improvement at the diploid species level. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 101–114). Enfield: Science Publishers Inc.

    Google Scholar 

  • Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–12.

    Article  CAS  Google Scholar 

  • Hein, I., Gilroy, E. M., Armstrong, M. R., & Birch, P. R. (2009). The zig-zag-zig in oomycete-plant interactions. Molecular Plant Pathology, 10, 547–562.

    Article  PubMed  CAS  Google Scholar 

  • Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80, 271–280.

    Article  Google Scholar 

  • Hijmans, R. J., & Spooner, D. M. (2001). Geographic distribution of wild potato species. American Journal of Botany, 88, 2101–2112.

    Article  PubMed  CAS  Google Scholar 

  • Hirotani, M., Kuroda, R., Suzuki, H., & Yoshikawa, T. (2000). Cloning and expression of UDP-glucose: flavonoid 7-O- glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta, 210, 1006–1013.

    PubMed  CAS  Google Scholar 

  • Hougas, R. W., Peloquin, S. J., & Ross, R. W. (1958). Haploids of the common potato. Journal of Heredity, 49, 103–107.

    Google Scholar 

  • Hu, X., Karasev, A. V., Brown, C. J., & Lorenzen, J. H. (2009). Sequence characteristics of potato virus Y recombinants. Journal of General Virology, 90, 3033–3041.

    Article  PubMed  CAS  Google Scholar 

  • Huaman, Z., & Spooner, D. M. (2002). Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany, 89, 947–965.

    Article  PubMed  Google Scholar 

  • Huaman, Z., Williams, J. T., Salhuana, W., & Vicent, L. (1977). Descriptors for the cultivated potato and for the maintenance and distribution of germplasm collections. International Board for Plant Genetic Resources, Rome, Italy.

  • Huang, S. (2005). Discovery and characterization of the major late blight resistance complex in potato. Thesis, The Netherlands: Wageningen University.

  • Hung, C. Y., Murray, J. R., Ohmann, S. M., & Tong, C. B. S. (1997). Anthocyanin accumulation during potato tuber development. Journal of the American Society for Horticultural Science, 122, 20–23.

    CAS  Google Scholar 

  • Jacobs, J. M. E., van Eck, H. J., Arens, P., Verkerk-Bakker, B., te Lintel Hekkert, B., Bastiaanssen, H. J. M., El-Kharbotly, A., Pereira, A., Jacobsen, E., & Stiekema, W. J. (1995). A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theoretical and Applied Genetics, 91, 289–300.

    Article  CAS  Google Scholar 

  • Janse, J. D. (1996). Potato brown rot in Western Europe: history, present occurrence and some remarks on possible origin, epidemiology and control strategies. OEPP/EPPO Bulletin, 26, 679–695.

    Google Scholar 

  • Jansky, S. (2000). Breeding for disease resistance in potato. In J. Janick (Ed.), Plant breeding reviews (pp. 69–165). New York: Wiley.

    Google Scholar 

  • Jarvis, A., Lane, A., & Hijmans, R. J. (2008). The effect of climate change on crop wild relatives. Agriculture, Ecosystems and Environment, 126, 13–23.

    Article  Google Scholar 

  • Jefferies, R. A. (1993). Responses of potato genotypes to drought. 1. Expansion of individual leaves and osmotic adjustment. Annals of Applied Biology, 122, 93–104.

    Article  Google Scholar 

  • Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm: No 19, potato. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Jin, L. P., Qu, D. Y., Xie, K. Y., Bian, C. S., & Duan, S. G. (2004). Potato germplasm, breeding studies in China. In: Proceedings of the Fifth World Potato Congress, Kunming, China, 175–178.

  • Jones, R. A. C. (1985). Further studies on resistance-breaking strains of potato virus X. Plant Pathology, 34, 182–189.

    Article  Google Scholar 

  • Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions and prospects for control. Virus Research, 141, 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. T., Kumar, A., Pylypenko, L. A., Thirugnanasambandam, A., Castelli, L., Chapman, S., Cock, P. J., Grenier, E., Lilley, C. J., Phillips, M. S., & Blok, V. C. (2009). Identification and functional characterisation of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology, 10, 815–828.

    Article  PubMed  CAS  Google Scholar 

  • Jupe, F., Pritchard, L., Etherington, G.J., MacKenzie. K., Cock, P.J., Wright, F., et al. (2012). Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 13.

  • Kasai, K., Morikawa, Y., Sorri, V. A., Valkonen, J. P. T., Gebhardt, C., & Watanabe, K. N. (2000). Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 43, 1–8.

    PubMed  CAS  Google Scholar 

  • Kays, S. J., & Paull, R. E. (2004). Postharvest biology. Athens: Exon Press.

    Google Scholar 

  • Kimpinski, J., & McRae, K. B. (1988). Relationship of yield and Pratylenchus spp. population densities in Superior and Russet Burbank potato. Journal of Nematology, 20, 34–37.

    PubMed  CAS  Google Scholar 

  • Kloosterman, B., De Koeyer, D., Griffiths, R., Flinn, B., Steuernagel, B., Scholz, U., Sonnewald, S., Sonnewald, U., Bryan, G. J., Prat, S., Bánfalvi, Z., Hammond, J. P., Geigenberger, P., Nielsen, K. L., Visser, R. G. F., & Bachem, C. W. B. (2008). Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional & Integrative Genomics, 8, 329–340.

    Article  CAS  Google Scholar 

  • Kloosterman, B., Oortwijn, M., Uitdewilligen, J., America, T., de Vos, R., Visser, R. G., et al. (2010). From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics, 11.

  • Knight, T. A. (1807). On raising of new and early varieties of the potato (Solanum tuberosum). Transactions of Horticultural Society. London, 1, 57–59.

    Google Scholar 

  • Kuhl, J. (2011). Mapping and tagging of simply inherited traits. In J. M. Bradeen & C. Kole (Eds.), Genetics, genomics and breeding of potato (pp. 90–112).

  • Lamichhane, J. R., Balestra, G. M., & Varvaro, L. (2010). Occurrence of potato Soft Rot caused by Erwinia carotovora (synonym Pectobacterium carotovorum) in Nepal: A First Report. Plant Disease, 94, 382.

    Article  Google Scholar 

  • Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., & Tumer, N. E. (1990). Engineering resistance to mixed virus-infection in a commercial potato cultivar - resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology, 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Lemaga, B., Kanzikwera, R., Kakuhenzire, R., Hakiza, J. J., & Manzi, G. (2001). The effect of crop rotation on bacterial wilt incidence and potato tuber yield. African Crop Science Journal, 9, 257–266.

    Google Scholar 

  • Levy, D., & Veilleux, R. E. (2007). Adaptation of potato to high temperatures and salinity - a review. American Journal of Potato Research, 84, 487–506.

    Article  Google Scholar 

  • Li, S., Duan, Y., Guo, T., & Zhang, Y. (2011). Demonstrating a link between nutrient use and water management to improve crop yields and nutrient use efficiency in arid Northwest China. Better Crops with Plant Food, 95, 20–22.

    Google Scholar 

  • Li, L., Paulo, M. J., van Eeuwijk, F., & Gebhardt, C. (2010). Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theoretical and Applied Genetics, 121, 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  • Li, S-X., Wang, Z-H., Malhi, S. S., Li, S-Q., Gao, Y-J., & Tian, X-H. (2009). Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. In D. L. Sparks (Ed.), Advances in agronomy (Vol 102, pp. 223–265).

  • Lopez, O., Cardoso, H., & Fernandez-Northcote, E. N. (1999). Incidencia y distribucion de la marchitez bacteriana de la papa en el Departamento de Tarija. Es. Cochabamba (Bolivia). Fundacion Proyecto Manejo Integrado de la Marchitez Bacteriana de la Papa (PROINPA).

  • Lorenzen, J. H., Meacham, T., Berger, P. H., Shiel, P. J., Crosslin, J. M., Hamm, P. B., & Kopp, H. (2006). Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Archives of Virology, 151, 1055–1074.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, G. D. (1989). The biochemical basis of resistance of potatoes to soft rot Erwinia spp.- a review. Plant Pathology, 38, 313–339.

    Article  CAS  Google Scholar 

  • Mackay, G. R. (2005). Propagation by traditional breeding methods. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 65–81). Enfield: Science Publishers, Inc.

    Google Scholar 

  • Malcolmson, J. F. (1969). Races of Phytophthora infestans occurring in Great Britain. Transactions of the British Mycological Society, 53, 417–423.

    Article  Google Scholar 

  • Marathe, R., Anandalakshimi, R., Liu, Y., & Dinesh-Kumar, S. P. (2002). The tobacco mosaic virus resistance gene, N. Molecular. Plant Pathology, 3, 167–172.

    CAS  Google Scholar 

  • Martin, M. J., Riedel, R. M., & Rowe, R. C. (1982). Verticillium dahlia and Pratylenchus penetrans: Interactions in the early dying complex of potato in Ohio. Phytopathology, 72, 640–644.

    Article  Google Scholar 

  • Massa, A. N., Lin, H., Bryan, G. J., Giuliano, G., & Buell, C. R. (2011). Transcriptome sequencing and analysis of the Solanum tuberosum Group Phureja clone DM1-3 516R44. The Plant Genome, 6(10), e26801.

    CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    Article  PubMed  CAS  Google Scholar 

  • McKey, D., Elias, M., Pujol, B., & Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186, 318–332.

    Article  PubMed  Google Scholar 

  • Menendez, C. M., Ritter, E., Schäfer-Pregl, R., Walkemeier, B., Kalde, A., Salamini, F., & Gebhardt, C. (2002). Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics, 162, 1423–1434.

    PubMed  CAS  Google Scholar 

  • Menzel, C. M. (1985). Tuberization in potato at high-temperatures - interaction between temperature and irradiance. Annals of Botany, 55, 35–39.

    CAS  Google Scholar 

  • Michel, V. V., & Mew, T. W. (1998). Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology, 88, 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Milbourne, D., Meyer, R. C., Collins, A. J., Ramsay, L. D., Gebhardt, C., & Waugh, R. (1998). Isolation, characterisation and mapping of simple sequence repeat loci in potato. Molecular and General Genetics, 259, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Monro, J. A. (2003). Redefining the glycemic index for dietary management of postprandial glycemia. Journal of Nutrition, 133, 4256–4258.

    PubMed  CAS  Google Scholar 

  • Monro, J. A., Mishra, S., Blandford, E., Anderson, J., & Genet, R. (2008). Potato genotype differences in nutritionally distinct starch fractions after cooking and cooking plus cooling. Journal of Food Composition and Analysis, 22, 539–545.

    Article  CAS  Google Scholar 

  • Muller, K. O., & Black, W. (1951). Potato breeding for resistance to blight and virus diseases during the last hundred years. Zeitschrift für Pflanzenzuchtung, 31, 305–318.

    Google Scholar 

  • Murakoshi, S., & Takahashi, M. (1984). Trials of some control of tomato bacterial wilt caused by Pseudomonas solanacearum. Bulletin of the Kanagawa Horticultural Experiment Station Issue, 31, 50–56.

    Google Scholar 

  • Navarro, C., Abelenda, J. A., Cruz-Oro, E., Cuellar, C. A., Tamaki, S., Silva, J., Shimamoto, K., & Prat, S. (2012). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478, 119–132.

    Article  CAS  Google Scholar 

  • Nesterenko, S., & Sink, K. (2003). Carotenoid profiles of potato breeding lines and selected cultivars. HortScience, 38, 1173–1177.

    CAS  Google Scholar 

  • Ngadze, E., Coutinho, T. A., & van der Waals, J. E. (2010). First report of soft rot of potatoes caused by Dickeya dadantii in Zimbabwe. Plant Disease, 94, 1263.

    Article  Google Scholar 

  • Nyangeri, J. B., Gathuru, E. M., & Mukunya, D. M. (1984). Effect of latent infection on the spread of bacterial wilt of potatoes in Kenya. Tropical Pest Management, 30, 163–165.

    Article  Google Scholar 

  • Oberhagemann, P., Chatot-Balandras, C., Schäfer-Pregl, R., Wegener, D., Palomino, C., Salamini, F., Bonnel, E., & Gebhardt, C. (1999). A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Molecular Breeding, 5, 399–415.

    Article  CAS  Google Scholar 

  • Ortiz, R. (1997). Breeding for potato production from true seed. Plant Breeding Abstracts, 67, 1355–1360.

    Google Scholar 

  • Ortiz, R. (2001). The state of the use of potato genetic diversity. In H. D. Cooper, C. Spillane, & T. Hodgkin (Eds.), Broadening the genetic base of crop production (pp. 181–200). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.

    Article  Google Scholar 

  • Pérombelon, M. C. M., & Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18, 361–387.

    Article  Google Scholar 

  • Phillips, M. S., & Trudgill, D. L. (1998). Variation in virulence, in terms of quantitative reproduction of Globodera pallida populations, from Europe and South America, in relation to resistance from Solanum vernei and S. tubersosum ssp andigena CPC 2802. Nematologica, 44, 409–423.

    Article  Google Scholar 

  • Plaisted, R. L. (1987). Advances and limitations in the utilization of Neotuberosum in potato breeding. In G. J. Jellis & D. E. Richardson (Eds.), The production of new potato varieties (pp. 186–196). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Plaisted, R. L., & Hoopes, R. W. (1989). The past record and future prospects for the use of exotic potato germplasm. American Potato Journal, 66, 603–627.

    Article  Google Scholar 

  • Ploeg, A. T., Brown, D. J. F., & Robinson, D. J. (1992). Acquisition and subsequent transmission of tobacco rattle virus isolates by Paratrichodorus and Trichodorus nematode species. European Journal of Plant Pathology, 98, 291–300.

    Google Scholar 

  • Porter, G. A., Opena, G. B., Bradbury, W. B., McBurnie, J. C., & Sisson, J. A. (1999). Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal, 91, 416–425.

    Article  Google Scholar 

  • Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9, 73–83.

    PubMed  CAS  Google Scholar 

  • Renault, D., & Wallender, W. W. (2000). Nutritional water productivity and diets. Agricultural Water Management, 45, 275–296.

    Article  Google Scholar 

  • Reynolds, M. P., Ewing, E. E., & Owens, T. G. (1990). Photosynthesis at high temperature in tuber-bearing Solanum species. 1. A comparison between accessions of contrasting heat tolerance. Plant Physiology, 93, 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Rickert, A. M., Kim, J. H., Meyer, S., Nagel, A., Ballvora, A., Oefner, P. J., & Gebhardt, C. (2013). First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnology Journal, 1(6), 399–410.

    Article  CAS  Google Scholar 

  • Riga, E., & Neilson, R. (2005). First report of the stubby-root nematode Paratrichodorus teres, from potato in the Columbia basin of Washington state. Plant Disease, 89, 1361.

    Article  Google Scholar 

  • Robert, Y., Woodford, J. A. T., & Ducray-Bourdin, D. G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Research, 71, 33–47.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, F., Ghislain, M., Clausen, A. M., Jansky, S. H., & Spooner, D. M. (2010). Hybrid origins of cultivated potatoes. Theoretical and Applied Genetics, 121, 1187–1198.

    Article  PubMed  Google Scholar 

  • Römer, S., Lubeck, J., Kauder, F., Steiger, S., Adomat, C., & Sandmann, G. (2002). Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabolic Engineering, 4, 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C. (2012). Reintroduction of genetically engineered potatoes into the U.S. market. APS Annual Meeting Supplement 4. Phytopathology, 102(S4), S151.

    Google Scholar 

  • Ross, H. (1986). Potato breeding – problems and perspectives. Advances in plant breeding, 13. Berlin and Hamburg: Paul Parey.

  • Sacco, M. A., Koropacka, K., Grenier, E., Jaubert, M. J., Blanchard, A., Goverse, A., Smant, G., & Moffett, P. (2009). The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathogens, 5, e1000564.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer-Pregl, R., Ritter, E., Concilio, L., Hesselbach, J., Lovatti, L., Walkemeier, B., Thelen, H., Salamini, F., & Gebhardt, C. (1998). Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theoretical and Applied Genetics, 97, 834–846.

    Article  Google Scholar 

  • Schäfer-Pregl, R., Salamini, F., & Gebhardt, C. (1996). Models for mapping quantitative trait loci (QTLs) in progeny of non-inbred parents and their behaviour in the presence of distorted segregation ratios. Genetic Research, 67, 43–54.

    Article  Google Scholar 

  • Schornack, S., Huitema, E., Cano, L. M., Bozkurt, T. O., Oliva, R., et al. (2009). Ten things to know about oomycete effectors. Molecular Plant Pathology, 10, 795–803.

    Article  PubMed  CAS  Google Scholar 

  • Scurrah, M. I., Niere, B., & Bridge, J. (2005). Nematode parasites of Solanum and sweet potatoes. In M. Luc, R. A. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 193–220). CABI Publishing.

  • Seinhorst, J. W. (1982). The relationship in field experiments between population density of Globodera rostochiensis before planting potatoes and yield of potato tubers. Nematologica, 28, 277–284.

    Article  Google Scholar 

  • Serfontein, S., Logan, C., Swanepoel, A. E., Boelema, B. H., & Theron, D. J. (1991). A potato wilt disease in South Africa caused by Erwinia carotovora subspecies carotovora and E. chrysanthemi. Plant Pathology, 40, 382–386.

    Article  Google Scholar 

  • Serrano, C., Arce-Johnson, P., Torres, H., et al. (2000). Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. American Journal of Potato Research, 77, 191–199.

    Article  CAS  Google Scholar 

  • Simko, I., Haynes, K. G., & Jones, R. W. (2006). Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics, 173(4), 2237–2245.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, N. W. (1969). Prospects of potato improvement. Scottish Plant Breeding Station Forty-Eighth Annual Report, 1968–69, 18–38.

    Google Scholar 

  • Simmonds, N. W. (1997). A review of potato propagation by means of seed, as distinct from clonal propagation by tubers. Potato Research, 40, 191–214.

    Article  Google Scholar 

  • Singh, R. P., Valkonen, J. P. T., Gray, S. M., Boonham, N., Jones, R. A. C., Kerlan, C., & Schubert, J. (2008). The Naming of Potato virus Y strains infecting potato. Archives of Virology, 153, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Smilde, W. D., Brigneti, G., Jagger, L., Perkins, S., & Jones, J. D. G. (2005). Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theoretical and Applied Genetics, 110, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Solomon-Blackburn, R. M., & Barker, H. (2001). A review of host major-gene resistance to potato viruses X, Y, A and V in potato:genes, genetics and mapped locations. Heredity, 86, 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Spooner, D. M., & Hijmans, R. J. (2001). Potato systematics and germplasm collecting, 1989–2000. American Journal of Potato Research, 78, 237–268.

    Article  Google Scholar 

  • Spooner, D. M., Nunez, J., Trujillo, G., Herrera, M. D. R., Guzman, F., & Ghislain, M. (2007). Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences of the United States of America, 49, 19398–19403.

    Article  CAS  Google Scholar 

  • Storey, M. (2007). The harvested crop. In D. Vreugdenhil (Ed.), Potato biology and biotechnology: advances and perspectives (pp. 441–470). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Swanepoel, A. E. (1990). The effect of temperature on the development of wilting and on progeny tuber infection of potatoes inoculated with South African strains of biovar 2 and 3 of Pseudomonas solanacearum. Potato Research, 33, 287–290.

    Article  Google Scholar 

  • Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vincente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., Martin, G. B., Messeguer, R., Miller, J. C., Miller, L., Paterson, A. H., Pineda, O., Roder, M. S., Wing, R. A., Wu, W., & Young, N. D. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160.

    PubMed  CAS  Google Scholar 

  • Tarn, T. R., Tai, G. C. C., De Jong, H., Murphy, A. M., & Seabrook, J. E. A. (1992). Breeding potatoes for long-day, temperate climates. In J. Janick (Ed.), Plant breeding reviews (9th ed., pp. 217–332). New York: Wiley.

    Google Scholar 

  • Taylor, M. A., & Ramsay, G. (2005). Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiology Plant, 124, 143–151.

    Article  CAS  Google Scholar 

  • Terta, M., El Karkouri, A., Ait M’hand, R., Achbani, E., Barakate, M., Amdan, M., Annajar, B., El Hassouni, M., Val, F., Bouteau, F., & Ennaji, M. M. (2011). Occurrence of Pectobacterium carotovorum strains isolated from potato soft rot in Morocco. Cellular and Molecular Biology, 56, OL1324–OL1333.

    Google Scholar 

  • Teulon, D. A. J., Workman, P. J., Thomas, K. K., & Neilson, M. C. (2009). Bactericiera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection, 62, 136–144.

    Google Scholar 

  • The Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–197.

    Article  CAS  Google Scholar 

  • The Tomato Genome Consortium. (2012). The tomato genome provides insights into fleshy fruit evolution. Nature, 485, 635–641.

    Article  CAS  Google Scholar 

  • Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror Lahkim, L., & Elphinstone, J. G. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60, 385–399.

    Article  Google Scholar 

  • Toxopeus, H. J. (1964). Treasure-digging for blight resistance in potatoes. Euphytica, 13, 206–222.

    Article  Google Scholar 

  • Trivedi, T. P., & Rajagopal, D. (1992). Distribution, biology, ecology and management of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Tropical Pest Management, 38, 279–285.

    Article  Google Scholar 

  • Turner, S. J., & Evans, K. (1998). The origins, global distribution and biology of potato cyst nematodes (Globodera rostochiensis (Woll.) and Globodera pallida Stone). In R. J. Marks & B. B. Brodie (Eds.), Potato cyst nematodes (pp. 7–26).

  • Vada, M. E. (1994). Environmental stress and its impact on potato yield. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 239–261). Wallingford: CAB International.

    Google Scholar 

  • Valkonen, J. P. T. (2007). Viruses: Economical losses and biotechnological potential. In D. Vreugdenhil (Ed.), Potato biology and biotechnology (pp. 619–641). New York: Elsevier.

    Chapter  Google Scholar 

  • Van Dam, J., Kooman, P. L., & Struik, P. C. (1996). Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research, 39, 51–62.

    Article  Google Scholar 

  • van der Merwe, J. J., Coutinho, T. A., Korsten, L., & van der Waals, J. E. (2010). Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 126, 175–185.

    Article  Google Scholar 

  • Van Eck, H. J., Jacobs, J. M. E., Stam, P., Ton, J., Stiekema, W. J., & Jacobsen, E. (1994). Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics, 137, 303–309.

    PubMed  Google Scholar 

  • Van Eck, H. J., Jacobs, J. M. E., van den Berg, P. M. M. M., Stiekema, W. J., & Jacobsen, E. (1994). The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin colour loci using RFLPs. Heredity, 73, 410–421.

    Article  CAS  Google Scholar 

  • Van Eck, H. J., Jacobs, J. M. E., van Dijk, J., Stiekema, W. J., & Jacobsen, E. (1993). Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theoretical and Applied Genetics, 86, 295–300.

    Article  Google Scholar 

  • Van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M., & Overbeek, L. S. (2000). Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology, 90, 1338–1366.

    Google Scholar 

  • van Os, H., Andrzejewski, S., Bakker, E., Barrena, I., Bryan, G. J., Caromel, B., Ghareeb, B., Isidore, E., De Jong, W., van Koert, P., Lefebvre, V., Milbourne, D., Ritter, E., van der Voort, J. N. A. M. R., Rousselle-Bourgeois, F., van Vliet, J., Waugh, R., Visser, R. G. F., Bakker, J., & van Eck, H. (2006). Construction of a 10,000 marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and genomewide physical map. Genetics, 173, 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  • Verbeek, M., Piron, P. G. M., Dullemans, A. M., Cuperus, C., & van der Vlugt, R. A. A. (2009). Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Annals of Applied Biology, 156, 39–49.

    Article  Google Scholar 

  • Visker, M. H. P. W., Keizer, L. C. P., Van Eck, H. J., Jacobsen, E., Colon, L. T., & Struik, P. C. (2003). Can the QTL for the late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theoretical and Applied Genetics, 106, 317–325.

    PubMed  CAS  Google Scholar 

  • Vleeshouwers, V. G., Raffaele, S., Vossen, J., Champouret, N., Oliva, R., Segretin, M. E., Rietman, H., Cano, L. M., Lokossou, A., Kessel, G., et al. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology, 49, 25.21–25.25.

    Article  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). Aflp – A new technique for DNA-fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Wakil, S. M., & Oyinlola, K. A. (2011). Diversity of pectinolytic bacteria causing soft rot disease of vegetables in Ibadan, Nigeria. Journal of Applied Biosciences, 38, 2540–2550.

    Google Scholar 

  • Walker, T., & Collion, M.-H. (1998). Priority setting at CIP for the 1998–2000 medium term plan. Lima: International Potato Centre.

    Google Scholar 

  • Wang, X., Liu, H., Li, J., et al. (2011). Identification and characterization of Pectobacterium species causing potato blackleg disease in North China. Phytopathology, 101, S187–S188.

    Google Scholar 

  • Wastie, R. L. (1991). Breeding for resistance. Advanced Plant Pathology, 7, 193–224.

    Google Scholar 

  • Wegener, C. (2001). Transgenic potatoes expressing an Erwinia pectate lyase gene—results of a 4-year field experiment. Potato Research, 44, 401–410.

    Article  CAS  Google Scholar 

  • Westermann, D. T. (2005). Nutritional requirements of potatoes. American Journal of Potato Research, 82, 301–307.

    Article  CAS  Google Scholar 

  • Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J., Gilroy, E. M., Armstrong, M. R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I. K., Pritchard, L., & Birch, P. R. J. (2007). A translocation signal for delivery of oomycete effector proteins inside host plant cells. Nature, 450, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Wiesenborn, D. P., Orr, P. H., Casper, H. H., & Tacke, B. K. (1994). Potato starch paste behavior as related to some physical/chemical properties. Journal of Food Science, 59, 644–648.

    Article  CAS  Google Scholar 

  • Wolf, S., Marani, A., & Rudich, J. (1991). Effect of temperature on carbohydrate metabolism in potato plants. Journal of Experimental Botany, 42, 619–625.

    Article  CAS  Google Scholar 

  • Wolters, A. M., Uitdewilligen, J. G., Kloosterman, B. A., Hutten, R. C., Visser, R. G., & van Eck, H. J. (2010). Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology, 73, 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.

    Article  PubMed  Google Scholar 

  • Yeh, B. P., & Peloquin, S. J. (1965). Pachytene chromosomes of the potato (Solanum tuberosum group andigena). American Journal of Botany, 52, 1014–1020.

    Article  Google Scholar 

  • Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., Shen, Q., & Shen, B. (2012). Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research, 167, 388–394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. J. Birch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birch, P.R.J., Bryan, G., Fenton, B. et al. Crops that feed the world 8: Potato: are the trends of increased global production sustainable?. Food Sec. 4, 477–508 (2012). https://doi.org/10.1007/s12571-012-0220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-012-0220-1

Keywords

Navigation