Skip to main content
Log in

Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Plasma modification and plasma polymer deposition are valuable technologies for the preparation of surfaces for the covalent binding of biomolecules for applications such as biosensors, medical prostheses, and diagnostic devices as well as surfaces for enzyme-mediated reactions. Covalency is conveniently tested by the ability of the surface to retain the attached molecules after vigorous washing with sodium dodecyl sulphate (SDS). Covalency is indicated if the fraction of protein retained lies above the curve characteristic of physisorption. Confidence in covalency is strengthened when the washing protocol is aggressive enough to remove all adsorbed protein from a control significantly more hydrophobic than the test surface. The use of linker chemistry to space the molecules from the surface is in some cases beneficial. However, the use of linker chemistry is not necessary to retain molecular function for long periods when the polymer surface is modified by energetic bombardment. The energetic bombardment retains hydrophilicity of the surface by crosslinking the subsurface, and this appears to facilitate retention of protein function. Energetic bombardment also increases the functional life of molecules immobilized and then freeze dried on plasma-modified surfaces. Analysis of the surfaces shows that the covalent binding mechanism is related to the presence of free radicals on the surface and in the subsurface regions. The unpaired electrons associated with the radicals appear to be mobile within the modified region and can diffuse to the surface to take part in binding interactions. Proactive implantable devices can make use of these principles of covalent attachment by seeding the surface of an implant with a biomolecule that elicits the desired interaction with cells and prevents undesirable responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Blanco S, Manloache S, Denes F (2001) A novel plasma-enhanced way for surface-functionalization of polymeric substrates. Polym Bull 47:329–336. doi:10.1007/s289-001-8189-4

    Article  CAS  Google Scholar 

  • Azarkan M, Huet J, Baeyens-Volant D et al (2007) Affinity chromatography: a useful tool in proteomics studies. J Chromatogr B Analyt Technol Biomed Life Sci 849:81–90. doi:10.1016/j.jchromb.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  • Bax DV, McKenzie DR, Weiss AS, Bilek MM (2009) Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater 5:3371–3381

    Google Scholar 

  • Bax DV, McKenzie DR, Weiss AS, Bilek MMM (2010) The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylenes and subsequent cell-binding activity. Biomaterials 31:2526–2534

    Google Scholar 

  • Biederman H (2004) Plasma polymer films. Imperial College Press, London

    Google Scholar 

  • Biederman H, Osada Y (1992) Plasma polymerisation processes. Elsevier, Amsterdam

    Google Scholar 

  • Bilek M, McKenzie DR, Nosworthy NJ, Kondyurin A (2006) Activated polymers binding biological molecules. PCT/AU2007/000321 (WO2007/104107), priority 15

  • Bilek M, McKenzie DR, Powles RC (2007) Treatment of polymeric biomaterials by ion implantation. In: Chu PK, Liu X (eds) Biomaterials and surface modification. Research Signpost, Kerala

    Google Scholar 

  • Bohnert JL, Fowler BC, Horbett TA, Hoffman AS (1990) Plasma gas discharge deposited fluorocarbon polymers exhibit reduced elutability of adsorbed albumin and fibrinogen. J Biomater Sci Polym Ed 1:279–297. doi:10.1163/156856289X00154

    Article  CAS  PubMed  Google Scholar 

  • Chen JP, Kiaei D, Hoffman AS (1993) Activity of horseradish peroxide adsorbed on radio frequency glow discharge-treated polymers. J Biomater Sci Polym Ed 5:167–182. doi:10.1163/156856294X00734

    Article  CAS  PubMed  Google Scholar 

  • d’Agostino R (1990) Plasma deposition, treatment and etching of polymers. Academic, New York

    Google Scholar 

  • Danilich MJ, Kandice Kottke-Marchant K, Anderson JM, Marchant RE (1992) The immobilization of glucose oxidase onto radio-frequency plasma-modified poly(etherurethaneurea). J Biomater Polymer Sci 3:1952–216. doi:10.1163/156856292X00123

    Google Scholar 

  • Frisk ML, Tepp WH, Johnson EA, Beebe DJ (2009) Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. Anal Chem 81(7):2760–2767

    Article  CAS  PubMed  Google Scholar 

  • Fu RKY, Tian X, Chu PK (2003) Enhancement of implantation energy using a conducting grid in plasma immersion ion implantation of dielectric/polymeric materials. Rev Sci Instrum 74:3697–3700

    Article  CAS  Google Scholar 

  • Gan BK, Bilek MMM, Kondyurin A, Mizuno K, McKenzie DR (2006) Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 247:254–260

    Article  CAS  Google Scholar 

  • Gan BK, Kondyurin A, Bilek MM (2007) Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23:2741–2746. doi:10.1021/la062722v

    Article  CAS  PubMed  Google Scholar 

  • Gan BK, Nosworthy NJ, McKenzie DR, dos Remedios CG, Bilek MMM (2008) Plasma immersion ion implantation treatment of polyethylene for enhanced binding of active horseradish peroxidase. J Biomed Mater Res A 85:605–610. doi:10.1002/jbm.a.31612

    CAS  PubMed  Google Scholar 

  • Ganapathy R, Sarmadi M, Denes F (1998) Immobilization of alpha-chymotrypsin on oxygen-RF-plasma functionalized PET and PP surfaces. J Biomater Sci Polym Ed 9:389–404

    CAS  PubMed  Google Scholar 

  • Ganapathy R, Manolache S, Sarmadi M, Simonsick WJ Jr, Denes F (2000) Immobilization of active a-chymotrypsin on RF-plama functionalized polymer surfaces. J App Polymer Sci 78:1783–1796

    Article  CAS  Google Scholar 

  • Ganapathy R, Manolache S, Sarmadi M, Denes F (2001) Immobilization of papain on cold-plasma functionalized polyethylene and glass surfaces. J Biomater Sci Polym Ed 12:1027–1049

    Article  CAS  PubMed  Google Scholar 

  • George DF, Bilek MMM, McKenzie DR (2008) Detecting and exploring partially unfolded states of proteins using a sensor with chaperone bound to its surface. Biosens Bioelectron 24:969–975. doi:10.1016/j.bios.2008.07.076

    Article  PubMed  Google Scholar 

  • Hartmann M, Roeradde J, Stoll D, Templin MS, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416. doi:10.1007/s00216-008-2379-z

    Article  CAS  PubMed  Google Scholar 

  • Ho JPY, Nosworthy NJ, Bilek MMM, Gan BK, McKenzie DR, Chu PK, dos Remedios CG (2007) Plasma-treated polyethylene surfaces for improved binding of active protein. Plasma Process Polymers 4:583–590. doi:10.1002/ppap.20060018

    Article  CAS  Google Scholar 

  • Inagaki K (1996) Surface modification and plasma polymerisation. Technomic, Lancaster, PA, USA

    Google Scholar 

  • Itoyama K, Tokura S, Hayashi T (2008) Lipoprotein lipase immobilization onto porous chitosan beads. Biotechnol Prog 10:225–229

    Article  Google Scholar 

  • Karkhaneh A, Mirzadeh H, Ghaffariyeh AR (2007) Simultaneous graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two-step plasma treatment. J App Polymer Sci 105:2208–2217

    Article  CAS  Google Scholar 

  • Kereszturi K, Tóth A, Mohai M, Bertóti I (2008) Surface chemical and nanomechanical alterations in plasma immersion ion implanted PET. Surf Interface Anal 40:664–667. doi:10.1002/sia.2643

    Article  CAS  Google Scholar 

  • Kiaei D, Hoffman AS, Horbett TA (1992) Tight binding of albumin to glow discharge treated polymers. J Biomater Sci Polym Ed 4:35–44. doi:10.1163/156856292X00286

    CAS  PubMed  Google Scholar 

  • Kondyurin A, Bilek M (2008) Ion beam treatment of polymers: application aspects from medicine to space. Elsevier, Oxford

    Google Scholar 

  • Kondyurin A, Maitz MF (2005) Surface modification of ePTFE and implants using the same. WO2007/022174 A2, priority 18

  • Kondyurin A, Gan BK, Bilek MMM, Mizuno K, McKenzie DR (2006) Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasm. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 251:413–418

    Article  CAS  Google Scholar 

  • Kondyurin A, Gan BK, Bilek MMM, McKenzie DR, Wuhrer K (2008a) Argon plasma immersion ion implantation of polystyrene films. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 266:1074–1084

    Article  CAS  Google Scholar 

  • Kondyurin A, Polonskyi O, Nosworthy N, Matousek J, Hlidek P, Biederman H, Bilek MMM (2008b) Covalent attachment and bioactivity of horseradish peroxidase on plasma-polymerized hexane coatings. Plasma Process Polymers 5:727–736. doi:10.1016/j.actbio.2008.04.017

    Article  CAS  Google Scholar 

  • Kondyurin A, Nosworthy NJ, Bilek MMM (2008c) Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater 4:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Kondyurin A, Nosworthy NJ, Bilek MMM, Jones R, Pigram PJ (2009a) Surface attachment of horseradish peroxidase to plasma immersion ion implantation modified nylon. (private communication)

  • Kondyurin A, Naseri P, Fisher K, McKenzie DR, Bilek MMM (2009b) Mechanisms for surface energy changes observed in plasma immersion ion implanted polyethylene: the roles of free radicals and oxygen-containing groups. Polym Degrad Stab 94:638–646. doi:10.1016/j.polymdegradstab.2009.01.004

    Article  CAS  Google Scholar 

  • MacDonald C, Morrow R, Weiss AS, Bilek MM (2008) Covalent attachment of functional protein to polymer surfaces: a novel one-step dry process. J Roy Soc Interface 5:663–669

    Article  CAS  Google Scholar 

  • Martinez AJ, Manolache S, Gonzalez V, Young RA, Denes F (2000) Immobilized biomolecules on plasma functionalized cellophane. I. Covalently attached alpha-chymotrypsin. J Biomater Sci, Polym Ed 11:415–438

    Article  CAS  Google Scholar 

  • Mesyats G, Klyachkin Y, Gavrilov N, Kondyurin A (1999) Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52:285–289

    Article  CAS  Google Scholar 

  • Mitchell SA, Davidson MR, Bradley RH (2005) Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interface Sci 281:122–129

    Article  CAS  PubMed  Google Scholar 

  • Nosworthy NJ, Ho JP, Kondyurin A, McKenzie DR, Bilek MMM (2007) The attachment of catalase and poly-l-lysine to plasma immersion ion implantation treated polyethylene. Acta Biomater 3:695–704. doi:10.1016/j.actbio.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Nosworthy NJ, McKenzie DR, Bilek MM (2009) A new surface for immobilizing and maintaining the function of enzymes in a freeze-dried state. Biomacromolecules 10:2577–2583

    Article  CAS  PubMed  Google Scholar 

  • Oates TWH, Pigott J, McKenzie DR, Bilek M (2003) Electric probe measurements of high voltage sheath collapse in cathodic arc plasmas due to surface charging of insulators. IEEE Trans Plasma Sci 3:438–443. doi:10.1109/TPS.2003.813199

    Article  Google Scholar 

  • Park JW, Lee DH, Kim YJ, Jang JH, Suh JY, Kim IS (2009) Osteoconductivity of titanium implants coated with a new fusion protein containing four cell adhesion motifs. Tissue Eng Regenerative Med 6:888–892

    Google Scholar 

  • Safranj A, Kiaei D, Hoffman AS (1991) Antibody immobilization onto glow discharge treated polymers. Biotechnol Prog 7:173–177. doi:10.1021/bp00008a012

    Article  CAS  PubMed  Google Scholar 

  • Sartori S, Rechichi A, Vozzi G, D'Acunto M, Heine E, Giusti P, Ciardelli G (2008) Surface modification of a synthetic polyurethane by plasma glow discharge: preparation and characterization of bioactive monolayers. React Funct Polymers 68:809–821

    Article  CAS  Google Scholar 

  • Sugita Y, Suzuki Y, Someya K, Ogawa A, Furuhata H, Miyoshi S, Motomura T, Miyamoto H, Igo S, Nosé Y (2009) Experimental evaluation of a new antithrombogenic stent using ion beam surface modification. Artif Organs 33:456–463. doi:10.1111/j.1525-1594.2009.00747.x

    Article  PubMed  Google Scholar 

  • Tóth A, Mohai M, Ujvári T, Bertóti I (2006) Hydrogen plasma immersion ion implantation of ultra-high molecular weight polyethylene. Surf Interface Anal 38:898–902. doi:10.1002/sia.2197

    Article  Google Scholar 

  • Trevan MD, Boffey SA, Goulding KG, Stanbury PF (1987) Enzyme applications in biotechnology: the biological principles. Open University Press, Milton Keynes, UK

    Google Scholar 

  • Vallet-Regí M, Balas F, Cololla M, Manzano M (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–191. doi:10.1016/j.progsolidstchem.2007.10.002

    Article  Google Scholar 

  • Wasserman B, Dresselhaus MS, Braunstein G, Wnek GE, Roth G (1985) Electron spin resonance study of ion-implanted polymers. J Electron Mater 14:157-170. doi:10.1007/BF02656673

    Google Scholar 

  • Woodward J (1985a) Immobilised cells and enzymes: a practical approach. Oxford University Press, USA

    Google Scholar 

  • Woodward J (1985b) Immobilsed enzymes: adsorption and covalent coupling. In: Woodward J (ed) Immobilised cells and enzymes: a practical approach. Oxford University Press, USA

    Google Scholar 

  • Yin Y, McKenzie DR, Bilek MM (2009a) Ellipsometric detection of post-drying conformational changes of surface immobilized protein monolayers at solid/air interfaces. (private communication)

  • Yin Y, Nosworthy HJ, Youssef H, Gong B, Bilek MMM, McKenzie DR (2009b) Acetylene plasma coated surfaces for covalent immobilization of proteins. Thin Solid Films 517:5343–5346. doi:10.1016/j.tsf.2009.03.045

    Article  CAS  Google Scholar 

  • Yin Y, Fisher K, Nosworthy NJ, Bax DV, Rubanov S, Gong W, Weiss AS, McKenzie DR, Bilek MMM (2009c) Covalently bound biomimetic layers on plasma polymers with graded metallic interfaces for in vivo implants. Plasma Process Polymers 6:658–666.

    Google Scholar 

  • Yin Y, Bilek MMM, McKenzie DR, Nosworthy NJ, Kondyurin A, Youssef H, Byrom MJ, Yang W (2009d) Acetylene plasma polymerised surfaces for covalent immobiization of dense bioactive protein monolayers. Surf Coatings Technol 203:1310–1316. doi:10.1016/j.surfcoat.2008.10.035

    Article  CAS  Google Scholar 

  • Yin Y, Nosworthy NJ, Gong B, Bax D, Kondyurin A, McKenzie DR, Bilek MMM (2009e) Plasma polymer surfaces compatible with a CMOS process for direct covalent enzyme immobilization. Plasma Process Polymers 6:68–75. doi:10.1002/ppap.200990000

    Article  CAS  Google Scholar 

  • Yin Y, Wise SG, Nosworthy NJ, Waterhouse A, Bax DV, Youssef H, Byrom MJ, Bilek MMM, McKenzie DR, Weiss AS, Ng MKC (2009f) Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials 30:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Ziegler JF, Biersack JP (1985) The stopping and range of ions in solids. Pergamon, New York

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Australian Research Council for financial support. We acknowledge also Professor Hans Griesser for helpful discussions on SDS washing as a test for covalent attachment of proteins to surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela M. Bilek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Methods for Characterising Plasma Treated surfaces and their ability to strongly attach bioactive protein layers (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilek, M.M., McKenzie, D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev 2, 55–65 (2010). https://doi.org/10.1007/s12551-010-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-010-0028-1

Keywords

Navigation