Skip to main content
Log in

High genetic diversity within Epimeria georgiana (Amphipoda) from the southern Scotia Arc

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

DNA barcoding revealed four well-supported clades among amphipod specimens that keyed out to Epimeria georgiana Schellenberg, 1931, three clades with specimens from the southern Scotia Arc and one clade with specimens from the Weddell Sea. Detailed morphological investigations of sequenced specimens were conducted, through light and scanning electron microscopy. High magnification (500–2,000 fold) revealed features such as comb-scales on the first antenna and trich bearing pits on the fourth coxal plate to be similar for all specimens in the four clades. Consistent microstructure character differences in the Weddell Sea specimens combined with high genetic distances (COI divergence > 20%) allowed the description of Epimeria angelikae, a species new to science. Specimens of E. georgiana in the other three COI clades from the Scotia Arc were morphologically indistinguishable. Representative specimens of clade A are also illustrated in detail. Our results on the high genetic divergences in epimeriid amphipods support the theory of the southern Scotia Arc being a centre of Antarctic diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell J (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res Pt II 58:230–241. doi:10.1016/j.dsr2.2010.05.016

    Article  Google Scholar 

  • Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res Pt II58:212–219. doi: 10.1016/j.dsr2.2010.05.019

  • Barnard KH (1932) Amphipoda. Discov Rep 5:1–326

    Google Scholar 

  • Barnes DKA, Kaiser S, Griffiths HJG, Linse K (2009) The marine, intertidal, fresh-water and terrestrial fauna of the South Orkney Islands, Antarctica. J Biogeogr 36:756–759

    Article  Google Scholar 

  • Boeck A (1871) Crustacea Amphipoda borealia et arctica Forhandliner I Videnskabs-Selskabet I Christiana 1870:83–280

    Google Scholar 

  • Bradbury MR, Bradbury JH, Williams WD (1998) Scanning electron microscope studies of rugosities, cuticular microstructures of taxonomic significance of the Australian amphipod family Neoniphargidae (Amphipoda). Crustaceana 71:603–614

    Article  Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA Barcoding of Marine Metazoa. Ann Rev Mar Sci 3:18.11-18.38.

  • Buhay JE (2009) “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29(1):96–110

    Article  Google Scholar 

  • Chu KH, Tong JG, Chan TY (1999) Mitochondrial cytochrome oxidase I sequence divergence in some Chinese species of Charybdis (Crustacea: Decapoda: Portunidae). Biochem Syst Ecol 27:461–468

    Article  CAS  Google Scholar 

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos Trans R Soc Lond B Biol Sci 338:99–109

    Google Scholar 

  • Clarke A, Crame JA (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc Biol Sci 365:3655–3666. doi:10.1098/rstb.2010.0270

    Article  Google Scholar 

  • Coleman CO (2003) ‘Digital inking’: how to make perfect line drawings on computers. Org Divers Evo 3(Electr Suppl 14):1–14

    Google Scholar 

  • Coleman CO (2007) Synopsis of the Amphipoda of the Southern Ocean. Volume 2: Acanthonotozomellidae, Amathillopsidae, Dikwidae, Epimeriidae, Iphimediidae, Ochlesidae and Vicmusiidae. Bull Inst R Sci Nat Belg Biol 77:1–134

    Google Scholar 

  • Coleman CO (2009) Drawing setae the digital way. Zoosyst Evol 85(2):305–310

    Article  Google Scholar 

  • Costa FO, Carvalho GR (2007) The Barcode of Life Initiative: synopsis and prospective societal impacts of DNA barcoding of fish. Genom Soc Policy 3:29–40

    Google Scholar 

  • Cuadras J (1982) Microtrichs of amphipod Crustacea. Morphology and distribution. Mar Behav Physiol 8:333–343

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Grant RA, Linse K (2009) Barcoding Antarctic biodiversity: current status and the CAML initiative, a case study of marine invertebrates. Polar Biol 32(11):1629–1637. doi:10.1007/s00300-009-0662-x

    Article  Google Scholar 

  • Grant RA, Griffiths HJ, Steinke D, Wadley V, Linse K (2011) Antarctic DNA barcoding; a drop in the ocean? Polar Biol 34:775–780. doi:10.1007/s00300-010-0932-7

    Article  Google Scholar 

  • Griffiths HJ, Arango CP, Munilla T, McInnes SJ (2011) Biodiversity and biogeography of Southern Ocean pycnogonids. Ecography 34:616–627. doi:10.1111/j.1600-0587.2010.06612.x

    Google Scholar 

  • Halcrow K, Bousfield EL (1987) Scanning electron microscopy of surface microstructures of some Gammaridean amphipod crustaceans. J Crustac Biol 7:274–287

    Article  Google Scholar 

  • Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P(2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep-Sea Res Pt II 58:230–241. doi: 10.1016/j.dsr2.2010.09.028

    Google Scholar 

  • Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Mol Phylol Evo 55:202–209

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B—Biol Sci 270:313–321. doi:10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B - Biol Sci 270:S96–S99. doi:10.1098/rsbl.2003.0025

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PloS Biol 2:1657–1663. doi:10.1371/journal.pbio.0020312

    Article  CAS  Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AH, Gieskes WW, Rozema J, Schorno RM, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 135–139

  • Held C, Leese F (2007) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. J Hered 99:137–148

    Article  PubMed  CAS  Google Scholar 

  • Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  • Kaïm-Malka RA, Maebe S, Macquart-Moulin C, Bezac C (1999) Antennal sense organs of Natatolana borealis (Lilljeborg 1851) (Crustacea: Isopoda). J Nat Hist 33(1):65–88

    Article  Google Scholar 

  • Kaufmann RS (1994) Structure and function of chemoreceptors in scavenging Lysianassoid amphipods. J Crustac Biol 14:54–71

    Article  Google Scholar 

  • Khalaji-Pirbalouty V, Wägele J-W (2010) Two new species of Ligia Fabricius, 1798 (Crustacea: Isopoda: Ligiidae) from the coasts of the Persian and Aden gulfs. Org Divers Evol 10:135–145. doi:10.1007/s13127-010-0003-5

    Article  Google Scholar 

  • Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Pol Biol 33:281–292. doi:10.1007/s00300-009-0703-5

    Article  Google Scholar 

  • Leese F, Kop A, Wägele J-W, Held C (2008) Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure. Front Zool 5:1–15

    Article  Google Scholar 

  • Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean ispod. Naturwissenschaften 97:583–594. doi:10.1007/s00114-010-0674-y

    Article  PubMed  CAS  Google Scholar 

  • Linse K, Cope T, Lörz A-N, Sands C (2007) Is the Scotia Sea a centre of Antractic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadenis (Arcoidea: Philobryidae). Pol Biol 30:1059–1068

    Article  Google Scholar 

  • Lörz A-N (2011) Pacific Epimeriidae (Amphipoda: Crustacea): Epimeria. J Mar Biol Assoc UK 91:471-477

    Google Scholar 

  • Lörz A-N, Maas EW, Linse K, Fenwick GD (2007) Epimeria schiaparelli sp. nov., an amphipod crustacean (family Epimeriidae) from the Ross Sea, Antarctica, with molecular characterisation of the species complex. Zootaxa 1402:23–37

    Google Scholar 

  • Lörz A-N, Maas EW, Linse K, Coleman CO (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). ZooKeys 18:91–128

    Google Scholar 

  • Meier R (2008) DNA sequences in taxonomy: opportunities and challenges. In: Wheeler QD (ed) The new taxonomy. CRC Press/Taylor and Francis, Boca Raton, pp 95–128

    Chapter  Google Scholar 

  • Meier R, Zhang GY, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57(5):809–813. doi:10.1080/10635150802406343

    Article  PubMed  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PloS Biol 3(12):2229–2238. doi:10.1371/journal.pbio.0030422

    Article  CAS  Google Scholar 

  • Meyran JC, Monnerot M, Taberlet P (1997) Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Mol Phylogenet Evol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin PM, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep-Sea Res Pt II 58:264–275. doi:10.1016/j.dsr2.2010.10.011

    Article  Google Scholar 

  • Oshel PE, Steele DH (1988) Comparative morphology of amphipod setae, and a proposed classification of setal types. Crustaceana (Suppl 13):90–99

    Google Scholar 

  • Pearse JS, Mooi R, Lockhard S, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles: contributions to International Polar Year science. Smithsonian Institution Scholarly Press, Washington, pp 181–196

    Chapter  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256. doi:10.1093/molbev/msn083

    Article  PubMed  CAS  Google Scholar 

  • Radulovici AE, Sainte-Marie B, Dufresne F (2009) DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Mol Ecol Resour 9:181–187

    Article  PubMed  CAS  Google Scholar 

  • Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? Diversity 2:450–472. doi:10.3390/d2040450

    Article  CAS  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) The Barcode of Life Data System. Mol Ecol Notes 7:355–364

    Article  PubMed  CAS  Google Scholar 

  • Raupach MJ, Wagele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198. doi:10.1017/s0954102006000228

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  • Schellenberg A (1931) Gammariden und Caprelliden des Magellangebietes, Südgeorgiens und der Westantarktis. In: Odhner T (ed) Further zoological results of the Swedish Antarctic Expedition 1901–1903, Vol. 2, P.A. Norstedt, Stockholm, pp 1–290, pl 291

  • Schnabel KE, Hebert PDN (2003) Resource-associated divergence in the Arctic marine amphipod Paramphithoe hystrix. Mar Biol 143:851–857. doi:10.1007/s00227-003-1126-4

    Article  Google Scholar 

  • Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8:247–255. doi:10.1111/j.1471-8286.2007.01996.x

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ, Steinke D, McVeagh SM, Stewart AL, Struthers CD, Roberts CD (2008) Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. J Fish Biol 73:1170–1182

    Article  CAS  Google Scholar 

  • Smith PJ, Steinke D, McMillan P, Stewart AL, McVeagh SM, Astarloa JD, Welsford D, Ward R (2010) DNA barcoding highlights a cryptic species of grenadier (genus Macrourus) in the Southern Ocean. J Fish Biol. doi:10.1111/j.1095-8649.2010.02846.x

  • Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences USA 105:13486–13491

    Article  CAS  Google Scholar 

  • Steinke D, Zemlak TS, Hebert PDN (2009) Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade. Plos One 4. doi:10.1371/journal.pone.0006300

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA, United States

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trend Ecol Evol 20:534–540

    Article  Google Scholar 

  • Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45: 1–10

    Google Scholar 

  • Walker AO (1903) Amphipoda of the ‘Southern Cross’ Antarctic Expedition. J Linn Soc Lond Zool 29:38–6

    Google Scholar 

  • Walker AO (1907) Crustacea III. Amphipoda. In: National Antarctic Expedition 1901–1904, Natural History Vol 3, British Museum, London pp 1–38, pls 1–13.

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356. doi:10.1111/j.1095-8649.2008.02080.x

    Article  PubMed  CAS  Google Scholar 

  • Watling L, Thurston M (1989) Antarctica as an evolutionary incubator: evidence from the cladistic biogeography of the amphipod Family Iphimediidae. In: Crame J (ed) Origins and evolution of the Antarctic biota. Geological Society, London. Geol Soc Spec Publ 47:297–313

    Article  Google Scholar 

  • Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 29:188–197. doi:10.1002/bies.20529

    Article  PubMed  CAS  Google Scholar 

  • Wilson NG, Schroedl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984

    Article  PubMed  Google Scholar 

  • Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082. doi:10.1111/j.1365-294X.2006.02999.x

    Article  PubMed  CAS  Google Scholar 

  • Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9:237–242. doi:10.1111/j.1755-0998.2009.02649.x

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Araujo PB, Bond-Buckup P (2009) Diversity and arrangement of the cuticular structures of Hyalella (Crustacea: Amphipoda: Dogielinotidae) and their use in taxonomy. Zoologia 26:127–142

    Google Scholar 

Download references

Acknowledgements

We are grateful to the team at the Canadian Centre for DNA Barcoding (supported by Genome Canada through the Ontario Genomics Institute) for providing they sequences for the CAML project. Angelika Brandt (Hamburg) kindly let the senior author use her microscope. Renate Walter (Hamburg) helped with the scanning electron microscopy. Erika Mackay (NIWA) kindly inked the drawings. Niamh Kilgallen (NIWA) and three anonymous reviewers are thanked for constructive criticism on an earlier version of the manuscript.

The Natural History Museums of Stockholm and London are thanked for the loan of type material. The curational help of the NIWA Invertebrate Collection (NIC) team is highly appreciated. A.N.L and P.S were supported by research funded by the New Zealand Government under the NZ International Polar Year-Census of Antarctic Marine Life Project, and gratefully acknowledge the Ministry of Fisheries Science Team and Ocean Survey 20/20 CAML Advisory Group (Land Information New Zealand, Ministry of Fisheries, Antarctica New Zealand, Ministry of Foreign Affairs and Trade, and National Institute of Water and Atmospheric Research Ltd.). K.L. was funded by The Natural Environment Research Council. D.S. was supported by funding of the Alfred P. Sloan Foundation to MarBOL. This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme and the NZ International Polar Year-Census.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Nina Lörz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lörz, AN., Smith, P., Linse, K. et al. High genetic diversity within Epimeria georgiana (Amphipoda) from the southern Scotia Arc. Mar Biodiv 42, 137–159 (2012). https://doi.org/10.1007/s12526-011-0098-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-011-0098-8

Keywords

Navigation