Skip to main content
Log in

Mapping of Soil Micronutrients in Kashmir Agricultural Landscape Using Ordinary Kriging and Indicator Approach

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil nutrient maps based on intensive soil sampling are useful to adopt site-specific management practices. Geostatistical methods have been widely used to determine the spatial correlation and the range of spatial dependence at different sampling scales. If spatial dependence is detected, the modeled semivariograms can then be used to map the interested variable by kriging, an interpolation method that produces unbiased estimates with minimal estimation variance. The objectives of this paper were to examine and map the spatial distribution of the soil micronutrients Cu, Zn, Fe and Mn on an agricultural area in Kupwara, J&K, under temperate climatic conditions. The ordinary kriging was first used to determine the values for the non-sampled locations, and then the indicator approach was used to transform the micronutrient content values into binary values having the mean values of each nutrient as the threshold content. All four elements analyzed showed spatial dependence using the indicator semivariograms. The strength of spatial dependence was assessed using the values of nugget effect and range from the semivariogram, the fitted range values decreased in the order Zn > Cu > Mn > Fe. The spatial dependence of the combination of two or more of the studied micronutrients was also examined using indicator semivariograms. In opposition to spatial analysis of individual microelements, indicator semivariograms obtained for the binary coding of the variables showed a great nugget effect value or a low proportion of sill. The maps for each nutrient obtained using indicator kriging showed some similarity in the spatial distribution, suggesting the delimitation of uniform management areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Heavy metals in soils (p. 368). London: Blackie Academic & Professional.

    Book  Google Scholar 

  • Assumpcao, R. A. B., Uribe-Opazo, M. A., Godoy, E., & Johann, J. A. (2007). Uso da krigagem indicatriz na avaliacao da probabilidade da produtividade de soja segundo os padroes regional, estadual e nacional. Acta Scientiarum Agronomy, 29, 165–171.

    Article  Google Scholar 

  • Cahn, M. D., Hummel, J. W., & Brouer, B. H. (1994). Spatial analysis of fertility for site-specific crop management. Soil Science Society of America Journal, 58, 1240–1248.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa Soil. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Carvalho, J. R. P., Silveira, P. M., & Vieira, S. R. (2002). Geoestatistica na determinagao da variabilidade espacial de caracteristicas quimicas do solo sob diferentes preparos. Pesquisa Agropecuaria Brasileira, 37, 1151–1159.

    Article  Google Scholar 

  • Carvalho, J. R. P., & Vieira, S. R. (2001). AvaliaSao e comparaSao de estimadores de krigagem para variaveis agronomicas: Umaproposta. (pp. 21). Brasilia: EMBRAPA.

  • Golden Software (1999). SURFER for windows. Realese 7.0. Contouring and 3D surface mapping for scientist’s engineers: user’s guide. (pp. 619) New York.

  • Gomes, F. P., & Garcia, C. H. (2002). Estatrstica aplicada a experimentos agronomicos e florestais (p. 309). FEALQ: Piracicaba.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: state-of-art and perspectives. Geoderma, 89, 1–45.

    Article  Google Scholar 

  • Grego, C. R., & Vieira, S. R. (2005). Variabilidade espacial depropriedades fisicas do solo em uma parcela experimental. Revista Brasileira de Ciência do Solo, 29, 169–177.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 560). New York: Oxford University Press.

    Google Scholar 

  • Jalali, M. (2007). Spatial variability in potassium release among calcareous soils of western Iran. Geoderma, 140, 42–50.

    Article  Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine evaluation problems on the witwatersrand. Journal of South African Institution of Mining and Metallurgy, 52, 119–139.

    Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  Google Scholar 

  • Liu, X. M., Xu, J. M., Zhang, M. K., Huang, J. H., Shi, J. C., & Yu, X. F. (2004). Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrients in paddy soil. Environmental Geology, 46, 189–194.

    Article  Google Scholar 

  • Lyon, S. W., Lembo, A. L., Walter, M. T., & Steenhuis, T. S. (2006). Defining probability of saturation with indicator kriging on hard and soft data. Advances in Water Resources, 29, 181–193.

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    Article  Google Scholar 

  • Montgomery, E. G. (1913). Experiments in wheat breeding: experimental error in the nursery and variation in nitrogen and yield. Washington, D.C. U.S. Department of Agriculture. Bureau of Plant Industry Bulletins, 269, 61.

    Google Scholar 

  • Motomiya, A. V. A., Cora, J. E., & Pereira, J. T. (2006). Uso de krigagem indicatriz na avaliagao de indicadores de fertilidade do solo. Revista Brasileira de Ciência do Solo, 30, 485–496.

    Article  Google Scholar 

  • Patil, S. S., Patil, V. C., & Al-Gaadi, K. A. (2011). Spatial variability in fertility status of surface soils. World Applied Sciences Journal, 14, 1020–1024.

    Google Scholar 

  • Pegoraro, R. F., Silva, I. R., Novais, R. F., Mendonca, E. S., Gebrim, F. O., & Moreira, F. F. (2006). Fluxo difuso e biodisponibilidade de zinco, cobre, ferro e manganes no solo: influencia da calagem, textura do solo e reslduos vegetais. Revista Brasileira de Ciência do Solo, 30, 859–868.

    Article  Google Scholar 

  • Ravikumar, M. A., Patil, P. L., & Dasog, G. S. (2007). Mapping of nutrient status under 48-A Distributary in Malaprabha Right Bank Command of Karnataka by Geographic Information technique-I. Major Nutrients. Karnataka Journal of Agricultural Sciences., 20, 735–737.

    Google Scholar 

  • Smith, J. L., Halvorson, J. J., & Papendick, R. I. (1993). Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal, 57, 743–749.

    Article  Google Scholar 

  • Sood, A., Sharma, P. K., Tur, N. S., & Nayyar, V. K. (2009). Micronutrient status and their spatial variability in soils of Muktsar district of Punjab-A GIS approach. Journal of the Indian Society of Soil Science, 53, 300–306.

    Google Scholar 

  • Takkar, P. N., & Mann, M. S. (1975). Evaluation of analytical methods of estimation of available zinc and response of applied zinc in major soil series of Ludhiana, Punjab. Agrochemica, 19, 420–430.

    Google Scholar 

  • Ulloa Guitian, M., Abreu, C. A., & Paz Gonzalez, A. (2001). Disponibilidad de macro y micronutrientes en un suelo de cultivo de Mabegondo (La Coruna). Cadernos do Laboratorio Xeoloxico de Laxe, 26, 243–254.

    Google Scholar 

  • Vieira, S. R. (2000). Geoestatlstica em estudos de variabilidadeespacial do solo. In Novais, R. F., Alvarez, V. H., Schaefer, G. R. (Eds.), Topicos em Ciencia do Solo. Vigosa: Sociedade Brasileira de Ciencia do Solo, 1 (pp. 1–54).

  • Vieira, S. R., Millete, J., Topp, G. C., & Reynolds, W. D. (2002). Handbook for geoestatistical analysis of variability in soil and climate data. In Alvarez, V. V. H., Schaefer, C. E. G. R., Barros, N. F., Mello, J. W. V., Costa, J. M. (Eds.), Topicos em Ciencia do Solo. Vigosa: Sociedade Brasileira de Ciencia do Solo, 2 (pp. 1–45).

  • Yu-Pin, L., Bai-You, C., Guey-Shin, S., & Tsun-Kuo, C. (2010). Combination a finite mixture distribution model with indicator kriging to delineated and map the spatial patterns of soil heavy metal pollution in Chunghua Country, central Taiwan. Environmental Pollution, 158, 235–244.

    Article  Google Scholar 

  • Zanao Junior, L. A., Lana, R. M. Q., & Guimaraes, E. C. (2007). Variabilidade espacial do pH, teores de materia orgamca e micronutrientes em profundidades de amostragem num Latossolo Vermelho sob semeadura direta. Ciencia Rural, 37, 1000–1007.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the State Council for Science and Technology, Government of Jammu and Kashmir for granting of financial support for the project on Nutrient Indexing and soil mapping using GPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mushtaq A. Wani.

About this article

Cite this article

Wani, M.A., Wani, J.A., Bhat, M.A. et al. Mapping of Soil Micronutrients in Kashmir Agricultural Landscape Using Ordinary Kriging and Indicator Approach. J Indian Soc Remote Sens 41, 319–329 (2013). https://doi.org/10.1007/s12524-012-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-012-0242-3

Keywords

Navigation