Skip to main content

Advertisement

Log in

Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Proteomic and peptidomic studies are emerging as an important part of the holistic approach to food science and technology and have been recently applied in the study and production of bioactive peptides. Food-derived bioactive peptides are short amino acid chains with a known sequence that may have one or more biological activities. The proteomic and peptidomic approach to bioactive peptide studies includes bioinformatics, chemometric tools and proteomic/peptidomic methods. A proteomic and peptidomic approach applied to the study of bioactive peptides allows optimizing their production and finding peptides of interest and contributes to understand the interaction mechanisms between receptor and bioactive peptides. The objective of this review was to describe recent analytical tools used for studying various aspects of food-derived biopeptides, emphasizing their production at laboratory and industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abe K, Kobayashi N, Sode K, Ikebukuro K (2007) Peptide ligand screening of alpha-synuclein aggregation modulators by in silico panning. BMC Bioinformatics 8:451. doi:10.1186/1471-2105-8-451

    Article  CAS  Google Scholar 

  2. Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci 81(12):3131–3138

    Article  CAS  Google Scholar 

  3. Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29(3):272–277. doi:10.1016/j.biotechadv.2011.01.001

    Article  CAS  Google Scholar 

  4. Akalin PK (2006) Introduction to bioinformatics. Mol Nutr Food Res 50(7):610–619. doi:10.1002/mnfr.200500273

    Article  CAS  Google Scholar 

  5. Albillos SM, Busto MD, Perez-Mateos M, Ortega N (2005) Chemometrical analysis of capillary electrophoresis casein fractions for predicting ripening times of milk mixture cheese. J Agric Food Chem 53(15):6094–6099. doi:10.1021/jf050352v

    Article  CAS  Google Scholar 

  6. Antolovich M, Prenzler P, Patsalides E, McDonald S, Robards K (2002) Methods for testing antioxidant activity. Analyst 127:183–198

    Article  CAS  Google Scholar 

  7. Bacsa B, Kappe CO (2007) Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation. Nat Protoc 2(9):2222–2227

    Article  CAS  Google Scholar 

  8. Bączek T, Wiczling P, Marszałł M, Heyden YV, Kaliszan R (2005) Prediction of peptide retention at different HPLC conditions from multiple linear regression models. J Proteome Res 4(2):555–563. doi:10.1021/pr049780r

    Article  CAS  Google Scholar 

  9. Bauchart C, Chambon C, Mirand PP, Savary-Auzeloux I, Rémond D, Morzel M (2007) Peptides in rainbow trout (Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chem 100(4):1566–1572. doi:10.1016/j.foodchem.2005.12.023

    Article  CAS  Google Scholar 

  10. Bazinet L, Firdaous L (2009) Membrane processes and devices for separation of bioactive peptides. Recent Pat Biotechnol 3(1):61–72

    Article  CAS  Google Scholar 

  11. Bello-Pérez LA, Paredes-López O (2009) Starches of some food crops, changes during processing and their nutraceutical potential. Food Eng Rev 1(1):50–65. doi:10.1007/s12393-009-9004-6

    Article  CAS  Google Scholar 

  12. Benkerroum N (2010) Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. Int J Dairy Technol 63(3):320–338. doi:10.1111/j.1471-0307.2010.00584.x

    Article  CAS  Google Scholar 

  13. Bernal J, Mendiola JA, Ibáñez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biomed Anal 55(4):758–774. doi:10.1016/j.jpba.2010.11.033

    Article  CAS  Google Scholar 

  14. Betoret E, Betoret N, Vidal D, Fito P (2011) Functional foods development: trends and technologies. Trends Food Sci Technol 22(9):498–508. doi:10.1016/j.tifs.2011.05.004

    Article  CAS  Google Scholar 

  15. Bhonsle JB, Venugopal D, Huddler DP, Magill AJ, Hicks RP (2007) Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem 50(26):6545–6553. doi:10.1021/jm070884y

    Article  CAS  Google Scholar 

  16. BIOPEP (2011) The chair of food biochemistry of Warmia and Mazury University. www.uwm.edu.pl/biochemia. Accessed on Nov 2011

  17. Boguski M (1998) Bioinformatics, a new era. Trends Biotechnol 16S:1–2

    Article  Google Scholar 

  18. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M (2010) Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem 118(3):559–565. doi:10.1016/j.foodchem.2009.05.021

    Article  CAS  Google Scholar 

  19. Boyd SE, Pike RN, Rudy GB, Whisstock JC, Garcia de la Banda M (2005) PoPS: a computational tool for modeling and predicting protease specificity. J Bioinform Comput Biol 3(3):551–585

    Article  CAS  Google Scholar 

  20. Brady R, Woonton B, Gee ML, O’Connor AJ (2008) Hierarchical mesoporous silica materials for separation of functional food ingredients—a review. Innov Food Sci Emerg Technol 9(2):243–248. doi:10.1016/j.ifset.2007.10.002

    Article  CAS  Google Scholar 

  21. Brusic V, Petrovsky N, Gendel SM, Millot M, Gigonzac O, Stelman SJ (2003) Computational tools for the study of allergens. Allergy 58(11):1083–1092. doi:10.1034/j.1398-9995.2003.00224.x

    Article  CAS  Google Scholar 

  22. Bütikofer U, Meyer J, Sieber R, Wechsler D (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int Dairy J 17(8):968–975. doi:10.1016/j.idairyj.2006.11.003

    Article  CAS  Google Scholar 

  23. Carbonaro M (2004) Proteomics: present and future in food quality evaluation. Trends Food Sci Technol 15(3–4):209–216. doi:10.1016/j.tifs.2003.09.020

    Article  CAS  Google Scholar 

  24. Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G (2012) Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem 131(4):1157–1164. doi:10.1016/j.foodchem.2011.09.084

    Article  CAS  Google Scholar 

  25. Català-Clariana S, Benavente F, Giménez E, Barbosa J, Sanz-Nebot V (2010) Identification of bioactive peptides in hypoallergenic infant milk formulas by capillary electrophoresis–mass spectrometry. Anal Chim Acta 683(1):119–125. doi:10.1016/j.aca.2010.10.002

    Article  CAS  Google Scholar 

  26. Clemente A, Vioque J, Sánchez-Vioque R, Pedroche J, Bautista J, Millán F (1999) Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food Chem 67(3):269–274. doi:10.1016/s0308-8146(99)00130-2

    Article  CAS  Google Scholar 

  27. Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150. doi:10.1016/s0968-0004(99)01540-6

    Article  CAS  Google Scholar 

  28. Costantini S, Colonna G, Facchiano AM (2007) PreSSAPro: a software for the prediction of secondary structure by amino acid properties. Comput Biol Chem 31(5–6):389–392. doi:10.1016/j.compbiolchem.2007.08.010

    Article  CAS  Google Scholar 

  29. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20(7):1637–1648. doi:10.1016/0006-2952(71)90292-9

    Article  CAS  Google Scholar 

  30. Cheison SC, Lai M-Y, Leeb E, Kulozik U (2011) Hydrolysis of β-lactoglobulin by trypsin under acidic pH and analysis of the hydrolysates with MALDI–TOF–MS/MS. Food Chem 125(4):1241–1248. doi:10.1016/j.foodchem.2010.10.042

    Article  CAS  Google Scholar 

  31. Chen GQ, He X, Liao LP, McKeon TA (2004) 2S albumin gene expression in castor plant (Ricinus communis L.). J Am Oil Chem Soc 81(9):867–872

    Article  CAS  Google Scholar 

  32. Chiba K (2006) New methodologies for the synthesis of oligopeptides and conformation-constrained peptidomimetics. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC-Press, Boca Ratón, pp 603–618

    Google Scholar 

  33. Chidambara Murthy KN, Kim J, Vikram A, Patil BS (2012) Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chem 132(1):27–34. doi:10.1016/j.foodchem.2011.10.014

    Article  CAS  Google Scholar 

  34. Chobert J-M, El-Zahar K, Sitohy M, Dalgalarrondo M, Métro F, Choiset Y, Haertlé T (2005) Angiotensin I-converting-enzyme (ACE)-inhibitory activity of tryptic peptides of ovine $\beta$-lactoglobulin and of milk yoghurts obtained by using different starters. Lait 85(3):141–152

    Article  CAS  Google Scholar 

  35. Darewicz M, Dziuba J, Minkiewicz P (2008) Celiac disease—background, molecular, bioinformatics and analytical aspects. Food Rev Int 24(3):311–329. doi:10.1080/87559120802089258

    Article  CAS  Google Scholar 

  36. Das R, Ghosh S, Bhattacharjee C (2012) Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: a comparison with non-peptidic antioxidants. LWT Food Sci Technol 47(2):238–245. doi:10.1016/j.lwt.2012.01.011

    Article  CAS  Google Scholar 

  37. Davisco (2012) Alpha-lactalbumin whey protein isolate. http://www.daviscofoods.com/specialty/alpha.html. Accessed July 2012

  38. Di Bernardini R, Harnedy P, Bolton D, Kerry J, O’Neill E, Mullen AM, Hayes M (2011) Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem 124(4):1296–1307. doi:10.1016/j.foodchem.2010.07.004

    Article  CAS  Google Scholar 

  39. Dia VP, Wang W, Oh VL, Lumen BO, de Mejia EG (2009) Isolation, purification and characterisation of lunasin from defatted soybean flour and in vitro evaluation of its anti-inflammatory activity. Food Chem 114(1):108–115. doi:10.1016/j.foodchem.2008.09.023

    Article  CAS  Google Scholar 

  40. Doig MT, Smiley JW (1993) Direct injection assay of angiotensin-converting enzyme by high-performance liquid chromatography using a shielded hydrophobic phase column. J Chromatogr 613(1):145–149

    Article  CAS  Google Scholar 

  41. DSM (2012) PeptoPro. http://www.dsm.com/le/en_US/peptopro/html/home_peptopro.htm. Accessed July 2012

  42. Dziuba J, Iwaniak A (2006) Database of proteins and bioactive peptide sequences. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC Press, Boca Raton, pp 543–563

    Google Scholar 

  43. Dziuba J, Minkiewicz P, Nalecz D, Iwaniak A (1999) Database of biologically active peptide sequences. Nahrung 43(3):190–195. doi:10.1002/(SICI)1521-3803(19990601)43:3<190:AID-FOOD190>3.0.CO;2-A

    Article  CAS  Google Scholar 

  44. Dziuba J, Niklewicz M, Iwaniak A, Darewicz M, Minkiewicz P (2004) Bioinformatic-aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Aliment 33(3):227–235

    Article  CAS  Google Scholar 

  45. Dziuba J, Niklewicz M, Iwaniak A, Darewicz M, Minkiewicz P (2005) Structural properties of proteolytic-accessible bioactive fragments of selected animal proteins. Polimery J 50(6):424–428

    CAS  Google Scholar 

  46. Dziuba M, Dziuba J, Iwaniak A (2007) Bioinformatics-aided characteristics of the structural motifs of selected potentially celiac-toxic proteins of cereals and leguminous plants. Pol J Food Nutr Sci 57(4):405–414

    CAS  Google Scholar 

  47. Dziuba M, Dziuba B, Iwaniak A (2009) Milk proteins as precursors of bioactive peptides. Acta Sci Pol Technol Aliment 8(1):71–90

    CAS  Google Scholar 

  48. Ebrahimi A, Schluesener H (2012) Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 11(2):329–345. doi:10.1016/j.arr.2012.01.006

    Article  CAS  Google Scholar 

  49. Echavarría AP, Torras C, Pagán J, Ibarz A (2011) Fruit juice processing and membrane technology application. Food Eng Rev 3(3–4):136–158. doi:10.1007/s12393-011-9042-8

    Article  CAS  Google Scholar 

  50. Ellegård KH, Gammelgård-Larsen C, Sørensen ES, Fedosov S (1999) Process scale chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides. Int Dairy J 9(9):639–652. doi:10.1016/s0958-6946(99)00135-1

    Article  Google Scholar 

  51. Fälth M, Sköld K, Norrman M, Svensson M, Fenyö D, Andren PE (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5(6):998–1005. doi:10.1074/mcp.M500401-MCP200

    Article  CAS  Google Scholar 

  52. Firdaous L, Dhulster P, Amiot J, Doyen A, Lutin F, Vézina L-P, Bazinet L (2010) Investigation of the large-scale bioseparation of an antihypertensive peptide from alfalfa white protein hydrolysate by an electromembrane process. J Membr Sci 355(1–2):175–181. doi:10.1016/j.memsci.2010.03.018

    Article  CAS  Google Scholar 

  53. Fjell CD, Hancock RE, Jenssen H (2010) Computer-aided design of antimicrobial peptides. Curr Pharm Anal 6(2):66–75. doi:10.2174/157341210791202645

    Article  CAS  Google Scholar 

  54. Fox JA, McMillan S, Ouellette BFF (2006) A compilation of molecular biology web servers: 2006 update on the bioinformatics links directory. Nucleic Acids Res 34(suppl 2):W3–W5. doi:10.1093/nar/gkl379

    Article  CAS  Google Scholar 

  55. Frecer V (2006) QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg Med Chem 14(17):6065–6074. doi:10.1016/j.bmc.2006.05.005

    Article  CAS  Google Scholar 

  56. Gagnaire V, Jardin J, Jan G, Lortal S (2009) Invited review: proteomics of milk and bacteria used in fermented dairy products: from qualitative to quantitative advances. J Dairy Sci 92(3):811–825. doi:10.3168/jds.2008-1476

    Article  CAS  Google Scholar 

  57. Gallegos-Tintoré S, Torres-Fuentes C, Martínez-Ayala AL, Solorza-Feria J, Alaiz M, Girón-Calle J, Vioque J (2011) Antioxidant and chelating activity of Jatropha curcas L. protein hydrolysates. J Sci Food Agric 91(9):1618–1624. doi:10.1002/jsfa.4357

    Article  CAS  Google Scholar 

  58. García-Cañas V, Simó C, León C, Cifuentes A (2010) Advances in nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J Pharm Biomed Anal 51(2):290–304. doi:10.1016/j.jpba.2009.04.019

    Article  CAS  Google Scholar 

  59. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  60. Gauthier SF, Pouliot Y, Saint-Sauveur D (2006) Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 16(11):1315–1323. doi:10.1016/j.idairyj.2006.06.014

    Article  CAS  Google Scholar 

  61. Gibbs BF, Zougman A, Masse R, Mulligan C (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37(2):123–131. doi:10.1016/j.foodres.2003.09.010

    Article  CAS  Google Scholar 

  62. Gill I, Lopez-Fandino R, Jorba X, Vulfson EN (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 18(3):162–183. doi:10.1016/0141-0229(95)00097-6

    Article  CAS  Google Scholar 

  63. Gómez-Ruiz J, Taborda G, Amigo L, Recio I, Ramos M (2006) Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur Food Res Technol 223(5):595–601. doi:10.1007/s00217-005-0238-0

    Article  CAS  Google Scholar 

  64. Gözke G, Posten C (2010) Electrofiltration of biopolymers. Food Eng Rev 2(2):131–146. doi:10.1007/s12393-010-9016-2

    Article  CAS  Google Scholar 

  65. Gu Y, Majumder K, Wu J (2011) QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res Int 44(8):2465–2474. doi:10.1016/j.foodres.2011.01.051

    Article  CAS  Google Scholar 

  66. Guadix A, Camacho F, Guadix EM (2006) Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. J Food Eng 72(4):398–405. doi:10.1016/j.jfoodeng.2004.12.022

    Article  CAS  Google Scholar 

  67. Guo H, Kouzuma Y, Yonekura M (2009) Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem 113(1):238–245. doi:10.1016/j.foodchem.2008.06.081

    Article  CAS  Google Scholar 

  68. Haileselassie SS, Lee BH, Gibbs BF (1999) Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J Dairy Sci 82(8):1612–1617

    Article  CAS  Google Scholar 

  69. Han J-Z, Wang Y-B (2008) Proteomics: present and future in food science and technology. Trends Food Sci Technol 19(1):26–30. doi:10.1016/j.tifs.2007.07.010

    Article  CAS  Google Scholar 

  70. Harnedy PA, FitzGerald RJ (2012) Bioactive peptides from marine processing waste and shellfish: a review. J Funct Foods 4(1):6–24. doi:10.1016/j.jff.2011.09.001

    Article  CAS  Google Scholar 

  71. Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18(2):163–169. doi:10.1016/j.copbio.2007.01.013

    Article  CAS  Google Scholar 

  72. Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 64(5):767–771

    CAS  Google Scholar 

  73. Hayakari M, Kondo Y, Izumi H (1978) A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal Biochem 84(2):361–369. doi:10.1016/0003-2697(78)90053-2

    Article  CAS  Google Scholar 

  74. He R, Ma H, Zhao W, Qu W, Zhao J, Luo L, Zhu W (2012) Modeling the QSAR of ACE-inhibitory peptides with ANN and Its applied illustration. Int J Pept 2012. doi:10.1155/2012/620609

  75. Heddleson RA, Park O, Allen JC (1997) Immunogenicity of casein phosphopeptides derived from tryptic hydrolysis of beta-casein. J Dairy Sci 80(9):1971–1976. doi:10.3168/jds.S0022-0302(97)76140-X

    Article  CAS  Google Scholar 

  76. Hernández-Ledesma B, del Mar ContrerasM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165(1):23–35. doi:10.1016/j.cis.2010.11.001

    Article  CAS  Google Scholar 

  77. Hernández-Ledesma B, Miralles B, Amigo L, Ramos M, Recio I (2005) Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Sci Food Agric 85(6):1041–1048. doi:10.1002/jsfa.2063

    Article  CAS  Google Scholar 

  78. Huang G, Ren L, Jiang J (2011) Purification of a histidine-containing peptide with calcium binding activity from shrimp processing byproducts hydrolysate. Eur Food Res Technol 232(2):281–287. doi:10.1007/s00217-010-1388-2

    Article  CAS  Google Scholar 

  79. Huang W-H, Sun J, He H, Dong H-W, Li J-T (2011) Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chem 128(4):968–973. doi:10.1016/j.foodchem.2011.03.127

    Article  CAS  Google Scholar 

  80. Hwang J-S, Tsai Y-L, Hsu K-C (2010) The feasibility of antihypertensive oligopeptides encapsulated in liposomes prepared with phytosterols-β-sitosterol or stigmasterol. Food Res Int 43(1):133–139. doi:10.1016/j.foodres.2009.09.007

    Article  CAS  Google Scholar 

  81. Ibe S, Yoshida K, Kumada K, Tsurushiin S, Furusho T, Otobe K (2009) Antihypertensive effects of natto, a traditional japanese fermented food, in spontaneously hypertensive rats. Food Sci Technol Res 15(2):199–202

    Article  CAS  Google Scholar 

  82. Jelic D, Toth D, Verbanac D (2003) Macromolecular databases, a background of bioinformatics. Food Technol Biotechnol 41:269–286

    CAS  Google Scholar 

  83. Jensen B, Unger KK, Uebe J, Gey M, Kim Y-M, Flecker P (1996) Proteolytic cleavage of soybean Bowman-Birk inhibitor monitored by means of high-performance capillary electrophoresis. Implications for the mechanism of proteinase inhibitors. J Biochem Biophys Methods 33(3):171–185. doi:10.1016/s0165-022x(96)00024-3

    Article  CAS  Google Scholar 

  84. Jenssen H, Fjell CD, Cherkasov A, Hancock REW (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci 14(1):110–114. doi:10.1002/psc.908

    Article  CAS  Google Scholar 

  85. Jiang Z, Tian B, Brodkorb A, Huo G (2010) Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chem 123(3):779–786. doi:10.1016/j.foodchem.2010.05.026

    Article  CAS  Google Scholar 

  86. Jimsheena VK, Gowda LR (2010) Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: structure–activity relationship. Peptides 31(6):1165–1176. doi:10.1016/j.peptides.2010.02.022

    Article  CAS  Google Scholar 

  87. Jimsheena VK, Gowda LR (2011) Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from arachin by simulated gastric digestion. Food Chem 125(2):561–569. doi:10.1016/j.foodchem.2010.09.048

    Article  CAS  Google Scholar 

  88. Jung E, Kim J, Kim M, Jung DH, Rhee H, Shin JM, Choi K, Kang SK, Kim MK, Yun CH, Choi YJ, Choi SH (2007) Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8:245. doi:10.1186/1471-2105-8-245

    Article  CAS  Google Scholar 

  89. Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Methods 2(1):41–60. doi:10.1007/s12161-008-9067-7

    Article  Google Scholar 

  90. Karelin AA, Blishchenko EY, Ivanov VT (1998) A novel system of peptidergic regulation. FEBS Lett 428(1–2):7–12. doi:10.1016/s0014-5793(98)00486-4

    Article  CAS  Google Scholar 

  91. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(suppl 1):D202–D205. doi:10.1093/nar/gkm998

    CAS  Google Scholar 

  92. Kim E-K, Lee S-J, Jeon B-T, Moon S-H, Kim B, Park T-K, Han J-S, Park P-J (2009) Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chem 114(4):1365–1370. doi:10.1016/j.foodchem.2008.11.035

    Article  CAS  Google Scholar 

  93. Kim S-K, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2(1):1–9. doi:10.1016/j.jff.2010.01.003

    Article  CAS  Google Scholar 

  94. Kim S, Kim SS, Lee BJ (2005) Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides 26(11):2050–2056. doi:10.1016/j.peptides.2005.04.007

    Article  CAS  Google Scholar 

  95. Kim SE, Kim HH, Kim JY, Kang YI, Woo HJ, Lee HJ (2000) Anticancer activity of hydrophobic peptides from soy proteins. BioFactors 12(1–4):151–155. doi:10.1002/biof.5520120124

    Article  CAS  Google Scholar 

  96. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323. doi:10.2174/1381612033454883

    Article  CAS  Google Scholar 

  97. Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1(2):177–187. doi:10.1016/j.jff.2009.01.007

    Article  CAS  Google Scholar 

  98. Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides—opportunities for designing future foods. Curr Pharm Des 9(16):1297–1308. doi:10.2174/1381612033454892

    Article  CAS  Google Scholar 

  99. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945–960. doi:10.1016/j.idairyj.2005.10.012

    Article  CAS  Google Scholar 

  100. Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Des 13(8):829–843. doi:10.2174/138161207780363112

    Article  CAS  Google Scholar 

  101. Kunda PB, Benavente F, Catalá-Clariana S, Giménez E, Barbosa J, Sanz-Nebot V (2012) Identification of bioactive peptides in a functional yogurt by micro liquid chromatography time-of-flight mass spectrometry assisted by retention time prediction. J Chromatogr A 1229:121–128. doi:10.1016/j.chroma.2011.12.093

    Article  CAS  Google Scholar 

  102. Kussmann M, Panchaud A, Affolter M (2010) Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J Proteome Res 9(10):4876–4887. doi:10.1021/pr1004339

    Article  CAS  Google Scholar 

  103. Langevin M-E, Bazinet L (2011) Ion-exchange membrane fouling by peptides: a phenomenon governed by electrostatic interactions. J Membr Sci 369(1–2):359–366. doi:10.1016/j.memsci.2010.12.031

    Article  CAS  Google Scholar 

  104. Langevin M-E, Roblet C, Moresoli C, Ramassamy C, Bazinet L (2012) Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. J Membr Sci 403–404:15–24. doi:10.1016/j.memsci.2012.02.005

    Article  CAS  Google Scholar 

  105. Li B, Chen F, Wang X, Ji B, Wu Y (2007) Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chem 102(4):1135–1143. doi:10.1016/j.foodchem.2006.07.002

    Article  CAS  Google Scholar 

  106. Li F-J, Yin L-J, Cheng Y-Q, Yamaki K, Fan J-F, Li L-T (2009) Comparison of angiotensin I-converting enzyme inhibitor activities of pre-fermented Douchi (a Chinese traditional fermented soybean food) started with various cultures. Int J Food Eng 5(2). doi:10.2202/1556-3758.1661

  107. Li GH, Qu MR, Wan JZ, You JM (2007) Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac J Clin Nutr 16(Suppl 1):275–280

    CAS  Google Scholar 

  108. Li H, Aluko RE (2010) Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J Agric Food Chem 58(21):11471–11476. doi:10.1021/jf102538g

    Article  CAS  Google Scholar 

  109. Li L, Wang J, Zhao M, Cui C, Jiang Y (2006) Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase. Food Technol Biotechnol 44:441–448

    CAS  Google Scholar 

  110. Losacco M, Gallerani R, Gobbetti M, Minervini F, De Leo F (2007) Production of active angiotensin-I converting enzyme inhibitory peptides derived from bovine β-casein by recombinant DNA technologies. Biotechnol J 2(11):1425–1434. doi:10.1002/biot.200700092

    Article  CAS  Google Scholar 

  111. Majumder K, Wu J (2010) A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res Int 43(5):1371–1378. doi:10.1016/j.foodres.2010.04.027

    Article  CAS  Google Scholar 

  112. Mäkinen S, Johannson T, Vegarud Gerd E, Pihlava JM, Pihlanto A (2012) Angiotensin I-converting enzyme inhibitory and antioxidant properties of rapeseed hydrolysates. J Funct Foods 4(3):575–583. doi:10.1016/j.jff.2012.03.003

    Article  CAS  Google Scholar 

  113. Maleki SJ, Kopper RA, Shin DS, Park C-W, Compadre CM, Sampson H, Burks AW, Bannon GA (2000) Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. J Immunol 164(11):5844–5849

    CAS  Google Scholar 

  114. Mamone G, Picariello G, Caira S, Addeo F, Ferranti P (2009) Analysis of food proteins and peptides by mass spectrometry-based techniques. J Chromatogr A 1216(43):7130–7142. doi:10.1016/j.chroma.2009.07.052

    Article  CAS  Google Scholar 

  115. Manso MA, Léonil J, Jan G, Gagnaire V (2005) Application of proteomics to the characterisation of milk and dairy products. Int Dairy J 15(6–9):845–855. doi:10.1016/j.idairyj.2004.07.021

    Article  CAS  Google Scholar 

  116. Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv 29(3):365–373. doi:10.1016/j.biotechadv.2011.01.008

    Article  CAS  Google Scholar 

  117. Massart D, Vandeginste B, Deming S, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  118. Megías C, Pedroche J, Yust MM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2009) Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT Food Sci Technol 42(1):228–232. doi:10.1016/j.lwt.2008.05.003

    Article  CAS  Google Scholar 

  119. Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (2007) Affinity purification of copper-chelating peptides from sunflower protein hydrolysates. J Agric Food Chem 55(16):6509–6514. doi:10.1021/jf0712705

    Article  CAS  Google Scholar 

  120. Mehanna AS, Dowling M (1999) Liquid chromatographic determination of hippuric acid for the evaluation of ethacrynic acid as angiotensin converting enzyme inhibitor. J Pharm Biomed Anal 19(6):967–973. doi:10.1016/s0731-7085(98)00122-8

    Article  CAS  Google Scholar 

  121. Menschaert G, Vandekerckhove TTM, Baggerman G, Schoofs L, Luyten W, Criekinge WV (2010) Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res 9(5):2051–2061. doi:10.1021/pr900929m

    Article  CAS  Google Scholar 

  122. Minkiewicz P, Dziuba J, Darewicz M, Iwaniak A, Dziuba M, Nałęcz D (2008) Food Peptidomics. Food Technol Biotechnol 46(1):1–10

    CAS  Google Scholar 

  123. Minkiewicz P, Dziuba J, Darewicz M, Iwaniak A, Michalska J (2009) Online programs and databases of peptides and proteolytic enzymes—a brief update for 2007–2008. Food Technol Biotechnol 47(4):345–355

    CAS  Google Scholar 

  124. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91(4):965–980

    CAS  Google Scholar 

  125. Mizushima S, Ohshige K, Watanabe J, Kimura M, Kadowaki T, Nakamura Y, Tochikubo O, Ueshima H (2004) Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men. Am J Hypertens 17(8):701–706

    Article  Google Scholar 

  126. Molina E, De Frutos M, Ramos M (2000) Capillary electrophoresis characterization of the casein fraction of cheeses made from cows’, ewes’ and goats’ milks. J Dairy Res 67(02):209–216

    Article  CAS  Google Scholar 

  127. Monaci L, Visconti A (2009) Mass spectrometry-based proteomics methods for analysis of food allergens. TrAC, Trends Anal Chem 28(5):581–591. doi:10.1016/j.trac.2009.02.013

    Article  CAS  Google Scholar 

  128. Murakami Y, Hirata A (2000) Novel process for enzymatic hydrolysis of proteins in an aqueous two-phase system for the production of peptide mixture. Prep Biochem Biotechnol 30(1):31–37. doi:10.1080/10826060008544942

    Article  CAS  Google Scholar 

  129. Najafian L, Babji AS (2012) A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides 33(1):178–185. doi:10.1016/j.peptides.2011.11.013

    Article  CAS  Google Scholar 

  130. Nakai S, Alizadeh-Pasdar N (2006) Rational designing of bioactive peptides. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease: designing of bioactive peptides. CRC-Press, Boca Ratón, pp 565–582

    Google Scholar 

  131. Narai-Kanayama A, Shikata Y, Hosono M, Aso K (2010) High level production of bioactive di- and tri-tyrosine peptides by protease-catalyzed reactions. J Biotechnol 150(3):343–347. doi:10.1016/j.jbiotec.2010.09.931

    Article  CAS  Google Scholar 

  132. Nasi A, Picariello G, Ferranti P (2009) Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J Proteomics 72(3):527–538. doi:10.1016/j.jprot.2009.02.001

    Article  CAS  Google Scholar 

  133. Ong L, Henriksson A, Shah NP (2007) Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Lait 87(2):149–165

    Article  CAS  Google Scholar 

  134. Palmblad M, Ramström M, Markides KE, Håkansson P, Bergquist J (2002) Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. Anal Chem 74(22):5826–5830. doi:10.1021/ac0256890

    Article  CAS  Google Scholar 

  135. Panchaud A, Affolter M, Kussmann M (2012) Mass spectrometry for nutritional peptidomics: how to analyze food bioactives and their health effects. J Proteomics 75(12):3546–3559. doi:10.1016/j.jprot.2011.12.022

    Article  CAS  Google Scholar 

  136. Paulson L, Persson R, Karlsson G, Silberring J, Bierczynska-Krzysik A, Ekman R, Westman-Brinkmalm A (2005) Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory. J Mass Spectrom 40(2):202–213. doi:10.1002/jms.740

    Article  CAS  Google Scholar 

  137. Pedreschi R, Hertog M, Lilley KS, Nicolaï B (2010) Proteomics for the food industry: opportunities and challenges. Crit Rev Food Sci Nutr 50(7):680–692. doi:10.1080/10408390903044214

    Article  CAS  Google Scholar 

  138. Pedroche J, Yust MM, Lqari H, Megias C, Girón-Calle J, Alaiz M, Vioque J, Millán F (2007) Obtaining of Brassica carinata protein hydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Res Int 40(7):931–938. doi:10.1016/j.foodres.2007.04.001

    Article  CAS  Google Scholar 

  139. Peng X, Xiong YL, Kong B (2009) Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem 113(1):196–201. doi:10.1016/j.foodchem.2008.07.068

    Article  CAS  Google Scholar 

  140. Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19(11):643–654. doi:10.1016/j.idairyj.2009.06.001

    Article  CAS  Google Scholar 

  141. Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218(42):7386–7398. doi:10.1016/j.chroma.2011.06.033

    Article  CAS  Google Scholar 

  142. Pihlanto A (2011) Milk protein products | bioactive peptides. In: Editor-in-Chief: John WF (ed) Encyclopedia of dairy sciences (2nd edn). Academic Press, San Diego, pp 879–886

  143. Piotto S, Bianchino E (2007) QSAR analysis on antimicrobial peptides. Chem Phys Lipids 149(1):S87

    Article  Google Scholar 

  144. Pischetsrieder M, Baeuerlein R (2009) Proteome research in food science. Chem Soc Rev 38(9):2600–2608

    Article  CAS  Google Scholar 

  145. Pownall TL, Udenigwe CC, Aluko RE (2010) Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem 58(8):4712–4718. doi:10.1021/jf904456r

    Article  CAS  Google Scholar 

  146. Prak K, Maruyama Y, Maruyama N, Utsumi S (2006) Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Peptides 27(6):1179–1186. doi:10.1016/j.peptides.2005.11.007

    Article  CAS  Google Scholar 

  147. Prevot-D’Alvise N, Lesueur-Lambert C, Fertin-Bazus A, Fertin B, Dhulster P, Guillochon D (2004) Continuous enzymatic solubilization of alfalfa proteins in an ultrafiltration reactor. Enzyme Microb Technol 34(5):380–391. doi:10.1016/j.enzmictec.2003.05.001

    Article  CAS  Google Scholar 

  148. Prieto CA, Guadix A, González-Tello P, Guadix EM (2007) A cyclic batch membrane reactor for the hydrolysis of whey protein. J Food Eng 78(1):257–265. doi:10.1016/j.jfoodeng.2005.09.024

    Article  CAS  Google Scholar 

  149. Primrose S, Woolfe M, Rollinson S (2010) Food forensics: methods for determining the authenticity of foodstuffs. Trends Food Sci Technol 21(12):582–590. doi:10.1016/j.tifs.2010.09.006

    Article  CAS  Google Scholar 

  150. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302. doi:10.1021/jf0502698

    Article  CAS  Google Scholar 

  151. Pripp AH (2006) Quantitative structure–activity relationship of prolyl oligopeptidase inhibitory peptides derived from β-casein using simple amino acid descriptors. J Agric Food Chem 54(1):224–228. doi:10.1021/jf0521303

    Article  CAS  Google Scholar 

  152. Pripp AH (2007) Docking and virtual screening of ACE inhibitory dipeptides. Eur Food Res Technol 225(3):589–592. doi:10.1007/s00217-006-0450-6

    Article  CAS  Google Scholar 

  153. Pripp AH, Isaksson T, Stepaniak L, Sørhaug T, Ardö Y (2005) Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends Food Sci Technol 16(11):484–494. doi:10.1016/j.tifs.2005.07.003

    Article  CAS  Google Scholar 

  154. Pritchard SR, Phillips M, Kailasapathy K (2010) Identification of bioactive peptides in commercial Cheddar cheese. Food Res Int 43(5):1545–1548. doi:10.1016/j.foodres.2010.03.007

    Article  CAS  Google Scholar 

  155. Put R, Daszykowski M, Baczek T, Vander Heyden Y (2006) Retention prediction of peptides based on uninformative variable elimination by partial least squares. J Proteome Res 5(7):1618–1625. doi:10.1021/pr0600430

    Article  CAS  Google Scholar 

  156. Ramadan MF, Al-Ghamdi A (2012) Bioactive compounds and health-promoting properties of royal jelly: a review. J Funct Foods 4(1):39–52. doi:10.1016/j.jff.2011.12.007

    Article  CAS  Google Scholar 

  157. Recio I, Ramos M, López-Fandiño R (2001) Capillary electrophoresis for the analysis of food proteins of animal origin. Electrophoresis 22(8):1489–1502. doi:10.1002/1522-2683(200105)22:8<1489:aid-elps1489>3.0.co;2-g

    Article  CAS  Google Scholar 

  158. Rejtar T, H-s Chen, Andreev V, Moskovets E, Karger BL (2004) Increased identification of peptides by enhanced data processing of high-resolution MALDI TOF/TOF mass spectra prior to database searching. Anal Chem 76(20):6017–6028. doi:10.1021/ac049247v

    Article  CAS  Google Scholar 

  159. Rho SJ, Lee J-S, Chung YI, Kim Y-W, Lee HG (2009) Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44(4):490–493. doi:10.1016/j.procbio.2008.12.017

    Article  CAS  Google Scholar 

  160. Ruiz-Rodriguez A, Reglero G, Ibañez E (2010) Recent trends in the advanced analysis of bioactive fatty acids. J Pharm Biomed Anal 51(2):305–326. doi:10.1016/j.jpba.2009.05.012

    Article  CAS  Google Scholar 

  161. Sabeena Farvin KH, Baron CP, Nielsen NS, Jacobsen C (2010) Antioxidant activity of yoghurt peptides: part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem 123(4):1081–1089. doi:10.1016/j.foodchem.2010.05.067

    Article  CAS  Google Scholar 

  162. Sagardia I, Iloro I, Elortza F, Bald C (2010) Identification of bioactive peptides in raw sheep milk ripened cheese by mass spectrometry combined with quantitative structure activity relationship (QSAR) Analysis. J Biotechnol 150(Suppl 0):60. doi:10.1016/j.jbiotec.2010.08.158

    Article  Google Scholar 

  163. Saha S, Raghava GP (2007) BTXpred: prediction of bacterial toxins. In Silico Biol 7(4–5):405–412

    CAS  Google Scholar 

  164. Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh T (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J Dairy Sci 83(7):1434–1440

    Article  CAS  Google Scholar 

  165. Samaranayaka AGP, Li-Chan ECY (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods 3(4):229–254. doi:10.1016/j.jff.2011.05.006

    Article  CAS  Google Scholar 

  166. Şanlidere Aloğlu H, Öner Z (2011) Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. J Dairy Sci 94(11):5305–5314. doi:10.3168/jds.2011-4285

    Article  CAS  Google Scholar 

  167. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956. doi:10.1016/j.peptides.2010.06.020

    Article  CAS  Google Scholar 

  168. Saz JM, Marina ML (2007) High performance liquid chromatography and capillary electrophoresis in the analysis of soybean proteins and peptides in foodstuffs. J Sep Sci 30(4):431–451. doi:10.1002/jssc.200600247

    Article  CAS  Google Scholar 

  169. Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 12(11):401–413. doi:10.1016/s0924-2244(02)00012-2

    Article  CAS  Google Scholar 

  170. Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19(10):S55–S60

    Article  CAS  Google Scholar 

  171. Schulz-Knappe P, Hans-Dieter Z, Heine G, Jurgens M, Schrader M (2001) Peptidomics the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screening 4(2):207–217. doi:10.2174/1386207013331246

    CAS  Google Scholar 

  172. Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) GOR V server for protein secondary structure prediction. Bioinformatics 21(11):2787–2788. doi:10.1093/bioinformatics/bti408

    Article  CAS  Google Scholar 

  173. Sentandreu MÁ, Toldrá F (2006) A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem 97(3):546–554. doi:10.1016/j.foodchem.2005.06.006

    Article  CAS  Google Scholar 

  174. Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. Am J Clin Nutr 77(2):326–330

    CAS  Google Scholar 

  175. Seppo L, Kerojoki O, Suomalainen T, Korpela R (2002) The effect of a Lactobacillus helveticus LBK-16 H fermented milk on hypertension—a pilot study on humans. Milchwissenschaft 57:124–127

    CAS  Google Scholar 

  176. Sheih IC, Wu T-K, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 100(13):3419–3425. doi:10.1016/j.biortech.2009.02.014

    Article  CAS  Google Scholar 

  177. Shi L, Zhang Q, Rui W, Lu M, Jing X, Shang T, Tang J (2004) BioPD: a web-based information center for bioactive peptides. Regul Pept 120(1–3):1–3. doi:10.1016/j.regpep.2004.03.002

    Article  CAS  Google Scholar 

  178. Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R (2007) PepBank—a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 8(1):280

    Article  CAS  Google Scholar 

  179. Siebert KJ (2001) Quantitative structure–activity relationship modeling of peptide and protein behavior as a function of amino acid composition. J Agric Food Chem 49(2):851–858. doi:10.1021/jf000718y

    Article  CAS  Google Scholar 

  180. Silva-Sánchez C, de la Rosa APB, León-Galván MF, de Lumen BO, de León-Rodríguez A, de Mejía EG (2008) Bioactive peptides in Amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56(4):1233–1240. doi:10.1021/jf072911z

    Article  CAS  Google Scholar 

  181. Silva RA, Lima MSF, Viana JBM, Bezerra VS, Pimentel MCB, Porto ALF, Cavalcanti MTH, Lima Filho JL (2012) Can artisanal “Coalho” cheese from Northeastern Brazil be used as a functional food? Food Chem 135(3):1533–1538. doi:10.1016/j.foodchem.2012.06.058

    Article  CAS  Google Scholar 

  182. Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appetite 51(3):456–467. doi:10.1016/j.appet.2008.05.060

    Article  Google Scholar 

  183. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34(suppl 2):W267–W272. doi:10.1093/nar/gkl161

    Article  CAS  Google Scholar 

  184. Strickland M, Johnson ME, Broadbent JR (2001) Qualitative and quantitative analysis of proteins and peptides in milk products by capillary electrophoresis. Electrophoresis 22(8):1510–1517. doi:10.1002/1522-2683(200105)22:8<1510:aid-elps1510>3.0.co;2-4

    Article  CAS  Google Scholar 

  185. Taboureau O (2010) Methods for building quantitative structure-activity relationship (QSAR) descriptors and predictive models for computer-aided design of antimicrobial peptides. Methods Mol Biol 618:77–86. doi:10.1007/978-1-60761-594-1_6

    CAS  Google Scholar 

  186. Takaki-Doi S, Hashimoto K, Yamamura M, Kamei C (2009) Antihypertensive activities of royal jelly protein hydrolysate and its fractions in spontaneously hypertensive rats. Acta Med Okayama 63(1):57–64

    CAS  Google Scholar 

  187. Takano T (1998) Milk derived peptides and hypertension reduction. Int Dairy J 8(5–6):375–381. doi:10.1016/s0958-6946(98)00060-0

    Article  CAS  Google Scholar 

  188. Tavares TG, Amorim M, Gomes D, Pintado ME, Pereira CD, Malcata FX (2012) Manufacture of bioactive peptide-rich concentrates from Whey: characterization of pilot process. J Food Eng 110(4):547–552. doi:10.1016/j.jfoodeng.2012.01.009

    Article  CAS  Google Scholar 

  189. Tavares TG, Contreras MM, Amorim M, Martín-Álvarez PJ, Pintado ME, Recio I, Malcata FX (2011) Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int Dairy J 21(12):926–933. doi:10.1016/j.idairyj.2011.05.013

    Article  CAS  Google Scholar 

  190. Tavares TG, Monteiro KM, Possenti A, Pintado ME, Carvalho JE, Malcata FX (2011) Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. Int Dairy J 21(12):934–939. doi:10.1016/j.idairyj.2011.06.004

    Article  CAS  Google Scholar 

  191. Tessier B, Blanchard F, Vanderesse R, Harscoat C, Marc I (2004) Applicability of predictive models to the peptide mobility analysis by capillary electrophoresis–electrospray mass spectrometry 1024. J Chromatogr A 1–2:255–266. doi:10.1016/j.chroma.2003.10.050

    Google Scholar 

  192. Tessier B, Schweizer M, Fournier F, Framboisier X, Chevalot I, Vanderesse R, Harscoat C, Marc I (2005) Prediction of the amino acid composition of small peptides contained in a plant protein hydrolysate by LC–MS and CE–MS. Food Res Int 38(5):577–584. doi:10.1016/j.foodres.2004.11.011

    Article  CAS  Google Scholar 

  193. The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38(suppl 1):D142–D148. doi:10.1093/nar/gkp846

    Article  CAS  Google Scholar 

  194. Tidona F, Criscione A, Guastella AM, Zuccaro A, Bordonaro S, Marletta D (2009) Bioactive peptides in dairy products. Italian J Anim Sci 8(3):315–340

    Google Scholar 

  195. Torres-Fuentes C, Alaiz M, Vioque J (2011) Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem 129(2):485–490. doi:10.1016/j.foodchem.2011.04.103

    Article  CAS  Google Scholar 

  196. Torres-Llanez MJ, González-Córdova AF, Hernandez-Mendoza A, Garcia HS, Vallejo-Cordoba B (2011) Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J Dairy Sci 94(8):3794–3800. doi:10.3168/jds.2011-4237

    Article  CAS  Google Scholar 

  197. Trusek-Holownia A (2008) Production of protein hydrolysates in an enzymatic membrane reactor. Biochem Eng J 39(2):221–229. doi:10.1016/j.bej.2007.09.010

    Article  CAS  Google Scholar 

  198. Udenigwe CC, Aluko RE (2012) Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci 77(1):R11–R24. doi:10.1111/j.1750-3841.2011.02455.x

    Article  CAS  Google Scholar 

  199. Vecchi B, Añón MC (2009) ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry 70(7):864–870. doi:10.1016/j.phytochem.2009.04.006

    Article  CAS  Google Scholar 

  200. Vercruysse L, Smagghe G, van der Bent A, van Amerongen A, Ongenaert M, Van Camp J (2009) Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides 30(3):575–582. doi:10.1016/j.peptides.2008.06.027

    Article  CAS  Google Scholar 

  201. Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G (2010) Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides 31(3):482–488. doi:10.1016/j.peptides.2009.05.029

    Article  CAS  Google Scholar 

  202. Vermeirssen V, van der Bent A, Van Camp J, van Amerongen A, Verstraete W (2004) A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 86(3):231–239. doi:10.1016/j.biochi.2004.01.003

    Article  CAS  Google Scholar 

  203. Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76(1):329–350. doi:10.3168/jds.S0022-0302(93)77354-3

    Article  CAS  Google Scholar 

  204. Wanasundara PKJPD, Ross ARS, Amarowicz R, Ambrose SJ, Pegg RB, Shand PJ (2002) Peptides with angiotensin i-converting enzyme (ACE) inhibitory activity from defibrinated, hydrolyzed bovine plasma. J Agric Food Chem 50(24):6981–6988. doi:10.1021/jf025592e

    Article  CAS  Google Scholar 

  205. Wang C, Tian J, Wang Q (2011) ACE inhibitory and antihypertensive properties of apricot almond meal hydrolysate. Eur Food Res Technol 232(3):549–556. doi:10.1007/s00217-010-1411-7

    Article  CAS  Google Scholar 

  206. Wang J, Li D, Dangott LJ, Wu G (2006) Proteomics and Its role in nutrition research. J Nutr 136(7):1759–1762

    CAS  Google Scholar 

  207. Wang W, De Mejia EG (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci Food Saf 4(4):63–78. doi:10.1111/j.1541-4337.2005.tb00075.x

    Article  CAS  Google Scholar 

  208. Wang W, Dia VP, Vasconez M, de Mejia EG, Nelson RL (2008) Analysis of soybean protein-derived peptides and the effect of cultivar, environmental conditions, and processing on lunasin concentration in soybean and soy products. J AOAC Int 91(4):936–946

    CAS  Google Scholar 

  209. Wang Z-L, Zhang S–S, Wang W, Feng F-Q, Shan W-G (2011) A novel angiotensin i converting enzyme inhibitory peptide from the milk casein: virtual screening and docking studies. Agric Sci China 10(3):463–467. doi:10.1016/s1671-2927(11)60026-6

    Article  CAS  Google Scholar 

  210. Welderufael F, Jauregi P (2010) Development of an integrative process for the production of bioactive peptides from whey by proteolytic commercial mixtures. Sep Sci Technol 45(15):2226–2234. doi:10.1080/01496395.2010.507662

    Article  CAS  Google Scholar 

  211. Wold S (1995) QSAR: chemometric methods in molecular design. Methods and principles in medicinal chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  212. Wold S, Sjöström M (1998) Chemometrics, present and future success. Chemom Intell Lab Syst 44(1–2):3–14. doi:10.1016/s0169-7439(98)00075-6

    Article  CAS  Google Scholar 

  213. Wu J, Aluko RE, Muir AD (2008) Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chem 111(4):942–950. doi:10.1016/j.foodchem.2008.05.009

    Article  CAS  Google Scholar 

  214. Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin i-converting enzyme inhibitory peptides: quantitative structure − activity relationship study of di- and tripeptides. J Agric Food Chem 54(3):732–738. doi:10.1021/jf051263l

    Article  CAS  Google Scholar 

  215. Yang B, Yang H, Li J, Li Z, Jiang Y (2011) Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem 124(2):551–555. doi:10.1016/j.foodchem.2010.06.069

    Article  CAS  Google Scholar 

  216. Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580(13):3315–3320. doi:10.1016/j.febslet.2006.04.092

    Article  CAS  Google Scholar 

  217. Zamyatnin AA, Borchikov AS, Vladimirov MG, Voronina OL (2006) The EROP-Moscow oligopeptide database. Nucleic Acids Res 34(suppl 1):D261–D266. doi:10.1093/nar/gkj008

    Article  CAS  Google Scholar 

  218. Zhong S, Ma C, Lin YC, Luo Y (2011) Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chem 126(4):1636–1642. doi:10.1016/j.foodchem.2010.12.046

    Article  CAS  Google Scholar 

  219. Zhu L, Chen J, Tang X, Xiong YL (2008) Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem 56(8):2714–2721. doi:10.1021/jf703697e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Dávila-Ortiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco-Castilla, J., Hernández-Álvarez, A.J., Jiménez-Martínez, C. et al. Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Eng Rev 4, 224–243 (2012). https://doi.org/10.1007/s12393-012-9058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-012-9058-8

Keywords

Navigation