Skip to main content
Log in

Human Body Pose Interpretation and Classification for Social Human-Robot Interaction

  • Original Paper
  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

A novel breed of robots known as socially assistive robots is emerging. These robots are capable of providing assistance to individuals through social and cognitive interaction. However, there are a number of research issues that need to be addressed in order to design such robots. In this paper, we address one main challenge in the development of intelligent socially assistive robots: The robot’s ability to identify human non-verbal communication during assistive interactions. In particular, we present a unique non-contact and non-restricting automated sensor-based approach for identification and categorization of human upper body language in determining how accessible a person is to the robot during natural real-time human-robot interaction (HRI). This classification will allow a robot to effectively determine its own reactive task-driven behavior during assistive interactions. Human body language is an important aspect of communicative nonverbal behavior. Body pose and position can play a vital role in conveying human intent, moods, attitudes and affect. Preliminary experiments show the potential of integrating the proposed body language recognition and classification technique into socially assistive robotic systems partaking in HRI scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee KW, Kim HR, Yoon WC, Yoon YS, Kwon DS (2005) Designing a human-robot interaction framework for home service robot. In: IEEE international workshop on robot and human interactive communication, pp 286–293

    Google Scholar 

  2. Heerink M, Kröse B, Wielinga B, Evers V (2006) Human-robot user studies in eldercare: lessons learned. In: Proceedings of international conference on smart homes and health telematics (ICOST), pp 31–38

    Google Scholar 

  3. Tapus A, Tapus C, Mataric MJ (2007) Hands-off therapist robot behavior adaptation to user personality for post-stroke rehabilitation therapy. In: IEEE international conference on robotics and automation, pp 1547–1553

    Google Scholar 

  4. Montemerlo M, Pineau J, Roy N, Thrun S, Verma V (2002) Experiences with a mobile robotic guide for the elderly. In: National conference on artificial intelligence, pp 587–592

    Google Scholar 

  5. Michaud F et al (2006) Socially interactive robots for real life use. In: American association for artificial intelligence (AAAI) workshop, pp 45–52

    Google Scholar 

  6. Stiehl WD, Lieberman J, Breazeal C, Basel L, Lalla L, Wolf M (2006) The design of the Huggable: A therapeutic robotic companion for relational affective touch. In: American association for artificial intelligence (AAAI) fall symposium on caring machines: AI in eldercare, pp 91–98

    Google Scholar 

  7. Heerink M, Krose B, Evers V, Wielinga B (2006) Studying the acceptance of a robotic agent by elderly users. In: Proceedings of the IEEE international symposium on robot and human interactive communication (RO-MAN), pp 1–11

    Google Scholar 

  8. Kozima H, Michalowski MP, Nakagawa C (2009) A playful robot for research therapy, and entertainment. Int J Soc Robot 1(1):3–18

    Article  Google Scholar 

  9. Saldien J, Goris K, Vanderborght B, Vanderfaeillie J, Lefeber D (2010) Expressing emotions with the social robot probo. Int J Soc Robot 2(4):377–389

    Article  Google Scholar 

  10. Blow M, Dautenhahn K, Appleby A, Nehaniv CL, Lee DC (2005) Perception of robot smiles and dimensions for human-robot interaction design. In: International conference on rehabilitation robotics, pp 337–340

    Google Scholar 

  11. Tapus A, Tapus C, Mataric MJ (2009) The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia. In: Proceedings of the international conference on rehabilitation robotics (ICORR), pp 1–6

    Google Scholar 

  12. Kang KI, Freedman S, Mataric MJ, Cunningham MJ, Lopez B (2005) A hands-off physical therapy assistance robot for cardiac patients. In: IEEE international conference on rehabilitation robotics, pp 337–340

    Chapter  Google Scholar 

  13. Sato K, Ishii M, Madokoro H (2003) Testing and evaluation of a patrol system for hospitals. Electron Commun Jpn 86(12):14–26

    Article  Google Scholar 

  14. Lopez M, Barea R, Bergasa L, Escudero M (2004) A human robot cooperative learning system for easy installation of assistant robot in new working environment. J Intell Robot Syst 40(3):233–265

    Article  Google Scholar 

  15. Eriksson J, Mataric MJ, Winstein CJ (2005) Hands-off assistive robotics for post-stroke arm rehabilitation. In: 9th international conference on rehabilitation robotics, pp 21–24

    Chapter  Google Scholar 

  16. Nejat G, Ficocelli M (2008) Can I be of assistance? The intelligence behind an assistive robot. In: IEEE int conference on robotics and automation (ICRA), pp 3564–3569

    Chapter  Google Scholar 

  17. Terao J, Trejos L, Zhang Z, Nejat G (2008) The design of an intelligent socially assistive robot for elderly care. In: ASME international mechanical engineering congress and exposition (IMECE), IMECE 2008–67678

    Google Scholar 

  18. Nejat G, Allison B, Gomez N, Rosenfeld A (2007) The design of an interactive socially assistive robot for patient care. In: ASME international mechanical engineering congress and exposition (IMECE), IMECE 2007–41811

    Google Scholar 

  19. Allison B, Nejat G, Kao E (2009) The design of an expressive human-like socially assistive robot. J Mech Robot 1(1):1–8

    Google Scholar 

  20. Gong S, McOwan PW, Shan C (2007) Beyond facial expressions: learning human emotion from body gestures. In: Proceedings of British machine vision conference, pp 1–10

    Google Scholar 

  21. Frintrop S, Konigs A, Hoeller F, Schulz D (2010) A component based approach to visual person tracking from a mobile platform. Int J Soc Robot 2(1):53–62

    Article  Google Scholar 

  22. Benezeth Y, Emile B, Laurent H, Rosenberger C (2010) Vision-based system for human detection and tracking in indoor environment. Int J Soc Robot 2(1):41–52

    Article  Google Scholar 

  23. Juang CF, Chang CM, Wu JR, Lee D (2009) Computer vision–based human body segmentation and posture estimation. IEEE Trans Syst Man Cybern, Part A, Syst Hum 39(1):119–133

    Article  Google Scholar 

  24. Mori G, Ren X, Efros A, Malik J (2004) Recovering human body configurations: combining segmentation and recognition. In: IEEE conference on computer vision and pattern recognition, vol 2(2), pp 326–333

    Google Scholar 

  25. Chen B, Nguyen N, Mori G (2008) Human pose estimation with rotated geometric blur. In: Workshop on applications of computer vision, pp 1–6

    Chapter  Google Scholar 

  26. Pham QC, Gond L, Begard J, Allezard N, Sayd P (2007) Real-time posture analysis in a crowd using thermal imaging. In: IEEE conference on computer vision and pattern recognition, pp 1–8

    Chapter  Google Scholar 

  27. Holte MB, Moeslund TB, Fihl P (2008) View invariant gesture recognition using the CSEM SwissRanger SR-2 Camera. Int J Intell Syst Technol Appl 5(3):295–303

    Google Scholar 

  28. Demirdjian D, Varri C (2009) Driver pose estimation with 3D time-of-flight sensor. In: IEEE workshop on computational intelligence in vehicles and vehicular systems, pp 1–7

    Google Scholar 

  29. Kohli P, Rihan J, Bray M, Torr PHS (2008) Simultaneous segmentation and pose estimation of humans using dynamic graph cuts. Int J Comput Vis 79(3):285–298

    Article  Google Scholar 

  30. Gupta A, Mittal A, Davis L (2008) Constraint integration for efficient multiview pose estimation with self-occlusions. IEEE Trans Pattern Anal Mach Intell 30(3):493–506

    Article  Google Scholar 

  31. Van den Bergh M, Koller-Meier E, Van Gool L (2009) Real-time body pose recognition using 2D or 3D haarlets. Int J Comput Vis 83(1):72–84

    Article  Google Scholar 

  32. Cheng S, Park S, Trivedi M (2005) Multiperspective thermal IR and video arrays for 3D body tracking and driver activity analysis. In: IEEE international workshop on object tracking and classification in and beyond the visible spectrum and IEEE CVPR, pp 1–8

    Google Scholar 

  33. Knoop S, Vacek S, Dillmann R (2007) A human body model for articulated 3D pose tracking. In: Pina Filho AC (ed) Humanoid robots, new developments, advanced robotic systems international, Croatia, pp 505–520

    Google Scholar 

  34. Microsoft, Kinect, Available HTTP: http://www.xbox.com/en-US/kinect

  35. Shimizu M, Yoshizuka T, Miyamoto H (2006) A gesture recognition system using stereo vision and arm model fitting. In: The 3rd international conference on brain-inspired information technology, pp 89–92

    Google Scholar 

  36. Hasanuzzaman M, Zhang T, Amporanamveth V, Bhuiyan MA, Shirai Y, Ueno H (2006) Gesture based human-robot interaction using a knowledge-based software platform. Ind Rob 33(1):37–49

    Article  Google Scholar 

  37. Hasanuzzaman M, Amporanamveth V, Zhang T, Bhuiyan MA, Shirai Y, Ueno H (2004) Real-time vision-based gesture recognition for human robot interaction. In: IEEE international conference on robotics and biomimetics, pp 413–418

    Chapter  Google Scholar 

  38. Park H, Kim E, Jang S, Park S, Park M, Kim H (2005) HMM-based gesture recognition for robot control. Pattern Recognit Image Anal 3522:607–614

    Article  Google Scholar 

  39. Bonato V, Sanches AK, Fernandes MM, Cardoso JMP, Simoes EDV, Marques E (2004) A real time gesture recognition system for mobile robots. In: International conference on informatics in control, automation and robotics, pp 207–214

    Google Scholar 

  40. Waldherr S, Thrun S, Romero R (2000) A gesture-based interface for human-robot interaction. Auton Robots 9(2):151–173

    Article  Google Scholar 

  41. Bahadori S, Locchi L, Nardi D, Settembre GP (2005) Stereo vision based human body detection from a localized mobile robot. In: IEEE conference on advanced video and signal based surveillance, pp 499–504

    Chapter  Google Scholar 

  42. Burger B, Ferrane I, Lerasle F (2008) Multimodal interaction abilities for a robot companion. In: International conference on computer vision systems, pp 549–558

    Chapter  Google Scholar 

  43. Guan F, Li LY, Ge SS, Loh AP (2007) Robust human detection and identification by using stereo and thermal images in human robot interaction. Int J Inf Acquis 4(2):1–22

    Google Scholar 

  44. Werghi N (2007) Segmentation and modeling of full human body shape from 3-D scan data: a survey. IEEE Trans Syst Man Cybern, Part C, Appl Rev 37(6):1122–1136

    Article  Google Scholar 

  45. Moeslund TB, Granum E (2001) A survey of computer vision-based human motion capture. Comput Vis Image Underst 81(1):231–268

    Article  MATH  Google Scholar 

  46. Moeslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104(1):90–126

    Article  Google Scholar 

  47. Gross JJ, Thompson RA (2007) Emotion regulation: conceptual foundations. Handbook of emotion regulation. Guilford, New York

    Google Scholar 

  48. Cohen I, Garg A, Huang TS (2000) Emotion recognition from facial expressions using multilevel HMM. Neural information processing systems

  49. Madsen M, el Kaliouby R, Goodwin M, Picard RW (2008) Technology for just-in-time in-situ learning of facial affect for persons diagnosed with autism spectrum. In: Proceedings of the 10th ACM conference on computers and accessibility (ASSETS), pp 1–7

    Google Scholar 

  50. Duthoit CJ, Sztynda T, Lal SKL, Jap BT, Agbinya JI (2008) Optical flow image analysis of facial expressions of human emotion—forensic applications. In: Proceedings of the 1st international conference on forensic applications and techniques in telecommunications, information, and multimedia and workshop, pp 1–6

    Google Scholar 

  51. Dailey MN, Cottrell GW, Padgett C (2002) EMPATH: a neural network that categorizes facial expressions. J Cogn Neurosci 14(8):1158–1173

    Article  Google Scholar 

  52. Lisetti CL, Marpaung A (2007) Affective cognitive modeling for autonomous agents based on Scherer’s emotion theory. Adv Artif Intell 4313:19–32

    Google Scholar 

  53. Tian YL, Kanade T, Cohn JF (2005) Facial expression analysis. In: Li SZ, Jain AK (eds) Handbook of face recognition. Springer, New York, pp 247–276

    Chapter  Google Scholar 

  54. Kessous L, Castellano G, Caridakis G (2010) Multimodal emotion recognition in speech-based interaction using facial expression, body gestures and acoustic analysis. J Multimod User Interfac 3(1):33–48

    Article  Google Scholar 

  55. Gunes H, Piccardi M (2005) Affect recognition from face and body: early fusion versus late fusion. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC’05), pp 3437–3443

    Google Scholar 

  56. Schindler K, Van Gool L, de Gelder B (2008) Recognizing emotions expressed by body pose: a biologically inspired neural model. Neural Netw 21(9):1238–1246

    Article  Google Scholar 

  57. Balomenos T, Raouzaiou A, Ioannou S, Drosopoulos A, Karpouzis K, Kollias S (2005) Emotion analysis in man-machine interaction systems, machine learning for multimodal interaction. In: Bengio S, Bourlard H (eds) Lecture notes in computer science, vol 3361. Springer, Berlin, pp 318–328

    Google Scholar 

  58. Gunes H, Piccardi M (2005) Fusing face and body display for bi-modal emotion recognition: single frame analysis and multi-frame post integration. In: 1st international conference on affective computing and intelligent interaction (ACII’2005). Springer, Berlin, pp 102–110

    Chapter  Google Scholar 

  59. Valstar MF, Gunes H, Pantic M (2007) How to distinguish posed from spontaneous smiles using geometric features. In: Proceedings of the ninth ACM international conference on multimodal interfaces (ICMI’07), pp 38–45

    Chapter  Google Scholar 

  60. Abbasi AR, Dailey MN, Afzulpurka NV, Uno T (2010) Student mental state inference from unitentional body gestures using dynamic Bayesian networks. J Multimod User Interfac 3(1):21–31

    Article  Google Scholar 

  61. Kapoor A, Picard R (2005) Multimodal affect recognition in learning environments. In: Proceedings of the ACM international conference on multimedia, pp 1–6

    Google Scholar 

  62. Castellano G, Leite I, Pereira A, Martinho C, Paiva A, McOwan PW (2010) Affect recognition for interactive companions: challenges and design in real world scenarios. J Multimod User Interfac 3(1):89–98

    Article  Google Scholar 

  63. De Silva PR, Osano M, Marasinghe A, Madurapperuma AP (2006) Towards recognizing emotion with affective dimensions through body gestures. In: Proceedings of the 7th international conference on automatic face and gesture recognition, pp 269–274

    Chapter  Google Scholar 

  64. Castellano G, Villalba SD, Camurri A (2007) Recognizing human emotions from body movement and gesture dynamics. In: Affective computing and intelligent interaction, pp 71–82

    Chapter  Google Scholar 

  65. Davis M (1997) Guide to movement analysis methods. Technical manuscript

  66. Medioni G, François ARJ, Siddiqui M, Kim K, Yoon H (2007) Robust real-time vision for a personal service robot. Comput Vis Image Underst Arch 108(1–2):196–203

    Article  Google Scholar 

  67. CSEM, SwissRanger SR3000, Available HTTP: http://www.swissranger.ch

  68. Thermoteknix Systems Ltd, Available HTTP: http://www.thermoteknix.com/

  69. JAI Industrial CCD/CMOS cameras, Available HTTP: http://www.jai.com/EN/Pages/home.aspx

  70. Davis M, Hadiks D (1990) Nonverbal behavior and client state changes during psychotherapy. J Clin Psychol 46(3):340–350

    Article  Google Scholar 

  71. Davis M, Hadiks D (1994) Non-verbal aspects of therapist attunement. J Clin Psychol 50(2):425–438

    Google Scholar 

  72. Cheung GKM, Kanade T, Bouguet JY, Holler M (2000) A real time system for robust 3D voxel reconstruction of human motions. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 714–720

    Google Scholar 

  73. Cai Q, Mitiche A, Aggarwal JK (1995) Tracking human motion in an indoor environment. In: International conference on image processing, pp 1–4

    Google Scholar 

  74. Haritaoglu I, Harwood D, Davis LS (1998) Ghost: a human body part labeling system using silhouettes. In: International conference on pattern recognition, pp 1–6

    Google Scholar 

  75. Hua G, Yang MH, Wu Y (2005) Learning to estimate human pose with data driven belief propagation. In: Proceedings in the conference on computer vision and pattern recognition, San Diego, California, USA, pp 1–8

    Google Scholar 

  76. Sanders M, McCormick E (1993) Human factors in engineering and design, 7th edn. McGraw-Hill, New York

    Google Scholar 

  77. Marras WS, Kim JY (1993) Anthropometry of industrial populations. J Ergon 36(4):371–378

    Article  Google Scholar 

  78. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  MathSciNet  MATH  Google Scholar 

  79. Hall ET (1966) The hidden dimension. Doubleday, New York

    Google Scholar 

  80. Weingarten J (2006) Feature-based 3D SLAM, PhD thesis, EPFL

  81. Matlab Calibration Toolbox, Available HTTP: http://www.vision.caltech.edu/bouguetj/calib_doc/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goldie Nejat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McColl, D., Zhang, Z. & Nejat, G. Human Body Pose Interpretation and Classification for Social Human-Robot Interaction. Int J of Soc Robotics 3, 313–332 (2011). https://doi.org/10.1007/s12369-011-0099-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-011-0099-6

Keywords

Navigation