Skip to main content
Log in

PET imaging of aortic atherosclerosis: Is combined imaging of plaque anatomy and function an amaranthine quest or conceivable reality?

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Traditionally, blood vessels have been studied using contrast luminography to determine the site, extent and severity of luminal compromise by atherosclerotic deposits. Similar anatomical data can now be acquired non-invasively using ultrasound, computed tomography or magnetic resonance imaging. Plaque stability is an important determinant of subsequent vascular events and currently functional data on the stability of plaque is less well provided by these methods. The search for non-invasive techniques to image combined plaque anatomy and function has been pursued with visionary anticipation. This expectation may soon be realised as imaging with radionuclide-labelled atheroma-targeted contrast agents has demonstrated that plaque functional characteristics can now be shown. Increasingly positron emission tomography/computed tomography (PET/CT) imaging with 18F fluorodexoyglucose (FDG) and other radionuclides is being used to determine culprit plaques in complex clinically scenarios. Clinically, this information may prove extremely valuable in the assessment of stable and unstable patients and its use in prime time medical practice is eagerly awaited. We will discuss the current clinical applications of functional atheroma imaging in the aorta and highlight the promising preclinical data on novel image biomarkers of plaque instability. If clinical science is able to successfully translate these advances in vascular imaging from the bench to the bedside, a new paradigm will be achieved in cardiovascular diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weintraub HS. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol 2008;101:3F-10F.

    Article  PubMed  Google Scholar 

  2. Tunick PA, Kronzon I. Atheromas of the thoracic aorta: Clinical and therapeutic update. J Am Coll Cardiol 2000;35:545-54.

    Article  PubMed  CAS  Google Scholar 

  3. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001;89:305-16.

    Article  PubMed  CAS  Google Scholar 

  4. Kai H. Novel non-invasive approach for visualizing inflamed atherosclerotic plaques using fluorodeoxyglucose-positron emission tomography. Geriatr Gerontol Int 2010;10:1-8.

    Article  PubMed  Google Scholar 

  5. Staub D, Schinkel AF, Coll B, Coli S, van der Steen AF, Reed JD, et al. Contrast-enhanced ultrasound imaging of the vasa vasorum: From early atherosclerosis to the identification of unstable plaques. JACC Cardiovasc Imaging 2010;3:761-71.

    Article  PubMed  Google Scholar 

  6. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE. Integrins: The keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 2008;28:1703-13.

    Article  PubMed  CAS  Google Scholar 

  7. Barger AC, Beeuwkes R III. Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am J Cardiol 1990;66:41G-3G.

    Article  PubMed  CAS  Google Scholar 

  8. Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ. Hypothesis: Vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984;310:175-7.

    Article  PubMed  CAS  Google Scholar 

  9. Witteman JC, Kannel WB, Wolf PA, Grobbee DE, Hofman A, D’Agostino RB, et al. Aortic calcified plaques and cardiovascular disease (the Framingham Study). Am J Cardiol 1990;66:1060-4.

    Article  PubMed  CAS  Google Scholar 

  10. Fazio GP, Redberg RF, Winslow T, Schiller NB. Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease. J Am Coll Cardiol 1993;21:144-50.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumura Y, Takata J, Yabe T, Furuno T, Chikamori T, Doi YL. Atherosclerotic aortic plaque detected by transesophageal echocardiography: Its significance and limitation as a marker for coronary artery disease in the elderly. Chest 1997;112:81-6.

    Article  PubMed  CAS  Google Scholar 

  12. Tunick PA, Krinsky GA, Lee VS, Kronzon I. Diagnostic imaging of thoracic aortic atherosclerosis. AJR Am J Roentgenol 2000;174:1119-25.

    PubMed  CAS  Google Scholar 

  13. Mitusch R, Doherty C, Wucherpfennig H, Memmesheimer C, Tepe C, Stierle U, et al. Vascular events during follow-up in patients with aortic arch atherosclerosis. Stroke 1997;28:36-9.

    Article  PubMed  CAS  Google Scholar 

  14. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 1994;331:1474-9.

    Article  PubMed  CAS  Google Scholar 

  15. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. The French Study of Aortic Plaques in Stroke Group. N Engl J Med 1996;334:1216-21.

  16. Tunick PA, Rosenzweig BP, Katz ES, Freedberg RS, Perez JL, Kronzon I. High risk for vascular events in patients with protruding aortic atheromas: A prospective study. J Am Coll Cardiol 1994;23:1085-90.

    Article  PubMed  CAS  Google Scholar 

  17. Davila-Roman VG, Murphy SF, Nickerson NJ, Kouchoukos NT, Schechtman KB, Barzilai B. Atherosclerosis of the ascending aorta is an independent predictor of long-term neurologic events and mortality. J Am Coll Cardiol 1999;33:1308-16.

    Article  PubMed  CAS  Google Scholar 

  18. Davis PH, Dawson JD, Blecha MB, Mastbergen RK, Sonka M. Measurement of aortic intimal-medial thickness in adolescents and young adults. Ultrasound Med Biol 2010;36:560-5.

    Article  PubMed  Google Scholar 

  19. Kallio K, Jokinen E, Saarinen M, Hamalainen M, Volanen I, Kaitosaari T, et al. Arterial intima-media thickness, endothelial function, and apolipoproteins in adolescents frequently exposed to tobacco smoke. Circ Cardiovasc Qual Outcomes 2010;3:196-203.

    Article  PubMed  Google Scholar 

  20. Volanen I, Kallio K, Saarinen M, Jarvisalo MJ, Vainionpaa R, Ronnemaa T, et al. Arterial intima-media thickness in 13-year-old adolescents and previous antichlamydial antimicrobial use: A retrospective follow-up study. Pediatrics 2008;122:e675-81.

    Article  PubMed  Google Scholar 

  21. Society of Atherosclerosis Imaging and Prevention Developed in collaboration with the International Atherosclerosis Society. Appropriate use criteria for carotid intima media thickness testing. Atherosclerosis 2011;214:43-6.

    Article  Google Scholar 

  22. Van ZB, Zuithoff NP, Reitsma JB, Bax L, Nierich AP, Moons KG. Meta-analysis of the diagnostic accuracy of transesophageal echocardiography for assessment of atherosclerosis in the ascending aorta in patients undergoing cardiac surgery. Acta Anaesthesiol Scand 2008;52:1179-87.

    Article  Google Scholar 

  23. Kurra V, Lieber ML, Sola S, Kalahasti V, Hammer D, Gimple S, et al. Extent of thoracic aortic atheroma burden and long-term mortality after cardiothoracic surgery: A computed tomography study. JACC Cardiovasc Imaging 2010;3:1020-9.

    Article  PubMed  Google Scholar 

  24. Boussel L, Cakmak S, Wintermark M, Nighoghossian N, Loffroy R, Coulon P, et al. Ischemic stroke: Etiologic work-up with multidetector CT of heart and extra- and intracranial arteries. Radiology 2011;258:206-12.

    Article  PubMed  Google Scholar 

  25. Corti R. Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy. Pharmacol Ther 2006;110:57-70.

    Article  PubMed  CAS  Google Scholar 

  26. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-71.

    PubMed  CAS  Google Scholar 

  27. ten Kate GL, Sijbrands EJ, Staub D, Coll B, ten Cate FJ, Feinstein SB, et al. Noninvasive imaging of the vulnerable atherosclerotic plaque. Curr Probl Cardiol 2010;35:556-91.

    Article  PubMed  Google Scholar 

  28. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: A new observation. Clin Nucl Med 2001;26:314-9.

    Article  PubMed  CAS  Google Scholar 

  29. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: Possible finding for active atherosclerosis. Radiology 2003;229:831-7.

    Article  PubMed  Google Scholar 

  30. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278-84.

    PubMed  Google Scholar 

  31. Sheikine Y, Akram K. FDG-PET imaging of atherosclerosis: Do we know what we see? Atherosclerosis 2010;211:371-80.

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.

    PubMed  CAS  Google Scholar 

  33. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294-301.

    Article  PubMed  Google Scholar 

  34. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.

    Article  PubMed  Google Scholar 

  35. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.

    Article  PubMed  CAS  Google Scholar 

  36. Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 2007;109:409-12.

    Article  PubMed  Google Scholar 

  37. Font MA, Fernandez A, Carvajal A, Gamez C, Badimon L, Slevin M, et al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci 2009;14:3352–60.

    Article  PubMed  CAS  Google Scholar 

  38. Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009;2:107-15.

    Article  PubMed  Google Scholar 

  39. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816-21.

    PubMed  Google Scholar 

  40. Laitinen I, Marjamaki P, Haaparanta M, Savisto N, Laine VJ, Soini SL, et al. Non-specific binding of [(18)F]FDG to calcifications in atherosclerotic plaques: Experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 2006;33:1461-7.

    Article  PubMed  CAS  Google Scholar 

  41. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008;15:209-17.

    Article  PubMed  Google Scholar 

  42. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009;50:1611-20.

    Article  PubMed  Google Scholar 

  43. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49:871-8.

    Article  PubMed  Google Scholar 

  44. Kato K, Schober O, Ikeda M, Schafers M, Ishigaki T, Kies P, et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging 2009;36:1622-8.

    Article  PubMed  CAS  Google Scholar 

  45. Forster S, Rominger A, Saam T, Wolpers S, Nikolaou K, Cumming P, et al. 18F-fluoroethylcholine uptake in arterial vessel walls and cardiovascular risk factors: Correlation in a PET-CT study. Nuklearmedizin 2010;49:148-53.

    Article  PubMed  CAS  Google Scholar 

  46. Matter CM, Wyss MT, Meier P, Spath N, von LT, Lohmann C, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006;26:584-9.

    Article  PubMed  CAS  Google Scholar 

  47. Laitinen IE, Luoto P, Nagren K, Marjamaki PM, Silvola JM, Hellberg S, et al. Uptake of 11C-choline in mouse atherosclerotic plaques. J Nucl Med 2010;51:798-802.

    Article  PubMed  Google Scholar 

  48. Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 2011.

  49. Takahashi K, Ohyanagi M, Ikeoka K, Masai M, Naruse H, Iwasaki T, et al. Detection of inflammation in aortic aneurysms with indium 111-oxine-labeled leukocyte imaging. J Nucl Cardiol 2001;8:165-70.

    Article  PubMed  CAS  Google Scholar 

  50. Sakalihasan N, Van DH, Gomez P, Rigo P, Lapiere CM, Nusgens B, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 2002;23:431-6.

    Article  PubMed  CAS  Google Scholar 

  51. Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, et al. Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: Potential agent for imaging of vulnerable plaque. J Nucl Med 2008;49:1677-85.

    Article  PubMed  CAS  Google Scholar 

  52. Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor. J Nucl Med 2009;50:612-7.

    Article  PubMed  CAS  Google Scholar 

  53. Elmaleh DR, Fischman AJ, Tawakol A, Zhu A, Shoup TM, Hoffmann U, et al. Detection of inflamed atherosclerotic lesions with diadenosine-5′,5′′′-P1, P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc Natl Acad Sci USA 2006;103:15992-6.

    Article  PubMed  CAS  Google Scholar 

  54. Johnson LL, Schofield L, Donahay T, Narula N, Narula J. 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med 2005;46:1186-93.

    PubMed  Google Scholar 

  55. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2009;2:331-8.

    Article  PubMed  Google Scholar 

  56. Giannarelli C, Ibanez B, Cimmino G, Garcia Ruiz JM, Faita F, Bianchini E, et al. Contrast-enhanced ultrasound imaging detects intraplaque neovascularization in an experimental model of atherosclerosis. JACC Cardiovasc Imaging 2010;3:1256-64.

    Article  PubMed  Google Scholar 

  57. Liu H, Wang X, Tan KB, Liu P, Zhuo ZX, Liu Z, et al. Molecular imaging of vulnerable plaques in rabbits using contrast-enhanced ultrasound targeting to vascular endothelial growth factor receptor-2. J Clin Ultrasound 2011;39:83-90.

    Article  PubMed  Google Scholar 

  58. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316-25.

    Article  PubMed  CAS  Google Scholar 

  59. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054-61.

    Article  PubMed  CAS  Google Scholar 

  60. Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010;122:1707-15.

    Article  PubMed  CAS  Google Scholar 

  61. Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, et al. MR molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging 2010;3:824-32.

    Article  PubMed  Google Scholar 

  62. Hyafil F, Vucic E, Cornily JC, Sharma R, Amirbekian V, Blackwell F, et al. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J 2010.

  63. Olzinski AR, Turner GH, Bernard RE, Karr H, Cornejo CA, Aravindhan K, et al. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E−/− mouse: Magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol 2010;30:253-9.

    Article  PubMed  CAS  Google Scholar 

  64. te Boekhorst BC, Bovens SM, Rodrigues-Feo J, Sanders HM, van de Kolk CW, de Kroon AI, et al. Characterization and in vitro and in vivo testing of CB2-receptor- and NGAL-targeted paramagnetic micelles for molecular MRI of vulnerable atherosclerotic plaque. Mol Imaging Biol 2010;12:635-51.

    Article  Google Scholar 

  65. Richards JM, Semple SI, Macgillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal Aortic Aneurysm Growth Predicted by Uptake of Ultrasmall Superparamagnetic Particles of Iron Oxide: A Pilot Study. Circ Cardiovasc Imaging 2011.

  66. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256:774-82.

    Article  PubMed  Google Scholar 

  67. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31.

    Article  PubMed  CAS  Google Scholar 

  68. Lee SJ, On YK, Lee EJ, Choi JY, Kim BT, Lee KH. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 2008;49:1277-82.

    Article  PubMed  CAS  Google Scholar 

  69. Schmitz SA, O’Regan DP, Fitzpatrick J, Neuwirth C, Potter E, Tosi I, et al. Quantitative 3T MR imaging of the descending thoracic aorta: Patients with familial hypercholesterolemia have an increased aortic plaque burden despite long-term lipid-lowering therapy. J Vasc Interv Radiol 2008;19:1403-8.

    Article  PubMed  Google Scholar 

  70. Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Chaplin WF, et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: A prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 2005;46:106-12.

    Article  PubMed  CAS  Google Scholar 

  71. Ayaori M, Momiyama Y, Fayad ZA, Yonemura A, Ohmori R, Kihara T, et al. Effect of bezafibrate therapy on atherosclerotic aortic plaques detected by MRI in dyslipidemic patients with hypertriglyceridemia. Atherosclerosis 2008;196:425-33.

    Article  PubMed  CAS  Google Scholar 

  72. Laskey WK, Feinendegen LE, Neumann RD, Dilsizian V. Low-level ionizing radiation from noninvasive cardiac imaging: Can we extrapolate estimated risks from epidemiologic data to the clinical setting? JACC Cardiovasc Imaging 2010;3:517-24.

    Article  PubMed  Google Scholar 

  73. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 2008;1:624-34.

    Article  PubMed  Google Scholar 

  74. Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 2008;78:148-57.

    Article  PubMed  CAS  Google Scholar 

  75. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157-66.

    Article  PubMed  CAS  Google Scholar 

  76. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56-62.

    Article  PubMed  CAS  Google Scholar 

  77. Hartung D, Petrov A, Haider N, Fujimoto S, Blankenberg F, Fujimoto A, et al. Radiolabeled Monocyte Chemotactic Protein 1 for the detection of inflammation in experimental atherosclerosis. J Nucl Med 2007;48(11):1816–21.

    Google Scholar 

  78. Bozoky Z, Balogh L, Mathe D, Fulop L, Bertok L, Janoki GA. Preparation and investigation of 99m technetium-labeled low-density lipoproteins in rabbits with experimentally induced hypercholesterolemia. Eur Biophys J 2004;33:140-5.

    Article  PubMed  CAS  Google Scholar 

  79. Dimastromatteo J, Riou LM, Ahmadi M, Pons G, Pellegrini E, Broisat A, et al. In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mTc-RAFT-RGD. J Nucl Cardiol 2010;17:435-43.

    Article  PubMed  Google Scholar 

  80. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270-4.

    Article  PubMed  CAS  Google Scholar 

  81. van Tilborg GA, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, et al. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem 2010;21:1794-803.

    Article  PubMed  Google Scholar 

  82. Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003;108:336-41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence D. Ruddy MD, FRCPC, FACC, FASNC.

Additional information

Gary Small is supported by the University of Ottawa Cardiology Research Endowment Fund. Terrence Ruddy is supported by the Vered Chair in Cardiology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, G.R., Ruddy, T.D. PET imaging of aortic atherosclerosis: Is combined imaging of plaque anatomy and function an amaranthine quest or conceivable reality?. J. Nucl. Cardiol. 18, 717–728 (2011). https://doi.org/10.1007/s12350-011-9385-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-011-9385-9

Keywords

Navigation