Skip to main content
Log in

Central Configurations in the Schwarzschild Three Body Problem

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we find some families of central configurations for the Schwarzschild three body problem. Since in this case the potential is the sum of two homogeneous functions, the total number of the central configurations depend of the size of the system measured by the moment of inertia. Depending of the values of the masses and the sign of the constants which appear in the equations of motion, we find the bifurcation values for our families in terms of the moment of inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.: Mathematical Methods in Classical Mechanics. Nauka, Moscow (1974)

    Google Scholar 

  2. Alfaro F., Perez-Chavela E.: Linear stability of relative equilibria in the charged three-body problem. J. Differ. Equ. 245, 1923–1944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandrasekhar, S.: The Mathematical Theory of Black Holes, Oxford University Press (1983)

  4. Corbera M., Llibre J., Perez-Chavela E.: Equilibrium points and central configurations for the Lennard–Jones 2 and 3-body problem. Celest. Mech. Dynamical Astron. 89, 235–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corbera, M., Llibre, J., Perez-Chavela, E.: Symmetric planar non-collinear relative equilibria for the Lennard–Jones potential 3-body Problem. In: Proceedings of the 6th Conference on Celestial Mechanics. Real Acad. Ci. Exact., Fis. Quim. Nat. Zar, Zaragoza, Spain, pp. 93–114 (2004)

  6. Delgado J., Diacu F., Lacomba E., Mingarelli A., Mioc V., Perez E., Stoica C.: The global flow of the Manev problem. J. Math. Phys. 37, 2748–2761 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diacu, F., Perez-Chavela, E., Santorprete, M.: Central configurations and total collisions for quasihomogeneous n-body problem. Nonlinear Anal. (2005)

  8. Meyer K., Hall G.: Introduction to Hamiltonian Dynamical Systems and the n-body Problem. Springer, New York (2007)

    Google Scholar 

  9. Mioc V., Stavinschi M.: The Schwarzschildy problem: a model for the motion in the solar system. Bull. Astron. Belgrade. 156, 21–26 (1997)

    Google Scholar 

  10. Mioc, V., Stavinschi, M.: The Schwarzschild-De sitter Problem. Rom. Astron. J. 8(2) (1998)

  11. Moeckel R.: Linear stability analysis of some symmetrical classes of relative equilibria. Appl. Math. 63, 291–317 (1995)

    MathSciNet  Google Scholar 

  12. Perez-Chavela E., Vela-Arevalo L.: Triple collision in the quasi-homogeneous collinear three-body problem. J. Differ. Equ. 148, 186–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rein, H.: Schwarzschild Metric-Theory, Simulations and Observations. http://hanno-rein.de. Cambridge University (2006)

  14. Rodica R., Mioc V.: Libration points in Schwarzschilds circular restricted three-body problem. Astrophys. Space Sci. 304, 101–103 (2006)

    Article  Google Scholar 

  15. Schutz B.: A First Course in General Relativity, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  16. Smale, S.: Mathematical problems for the next century. In: Arnold, V., Atiyah M., Lax P., Mazur, B. (eds.) Mathematics: Frontiers and Per-spectives, American Math. Soc., pp. 271–294 (2000)

  17. Stephani H., Kramer D., Maccallum M., Herlet E.: Exact Solutions of Einstein Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  18. Stoica C., Mioc V.: The Schwarzschild problem in astrophysics. Astrophys. Space Sci. 249, 161–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wiltshire D., Visser M., Scott S.: The Kerr Spacetime Rotating Black Holes in General Relativity. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  20. Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Perez-Chavela.

Additional information

We thank to the anonymous referee for his useful comments that help us to improve this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arredondo, J.A., Perez-Chavela, E. Central Configurations in the Schwarzschild Three Body Problem. Qual. Theory Dyn. Syst. 12, 183–206 (2013). https://doi.org/10.1007/s12346-012-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-012-0086-9

Keywords

Mathematics Subject Classification (2000)

Navigation