Skip to main content
Log in

Mechanisms of Ethanol-Induced Death of Cerebellar Granule Cells

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-d-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAC:

Blood alcohol concentration

BDNF:

Brain-derived neurotrophic factor

CDK:

Cyclin-dependent kinase

CGC:

Cerebellar granule cells

CGCP:

CGC precursor

CNS:

Central nervous system

EGL:

External germinal layer

FASD:

Fetal alcohol spectrum disorders

IGF-I:

Insulin-like growth factor I

IGL:

Internal granule layer

ML:

Molecular layer

MMP:

Mitochondrial membrane potential

NGF:

Nerve growth factor

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PCL:

Purkinje cell layer

PD:

Postnatal days

PI3K:

Phosphatidylinositol 3-kinase

PKG:

Cyclic GMP-dependent protein kinase

PKR:

Double-stranded RNA-activated protein kinase

RA:

Retinoic acid

ROS:

Reactive oxygen species

TD:

Thiamine deficiency

References

  1. Riley EP, McGee CL. Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp Biol Med (Maywood). 2005;230:357–65.

    CAS  Google Scholar 

  2. Spadoni AD, McGee CL, Fryer SL, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. Neurosci Biobehav Rev. 2007;31:239–45.

    PubMed  CAS  Google Scholar 

  3. Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol. 2009;44:108–14.

    PubMed  CAS  Google Scholar 

  4. Mattson SN, Riley EP. A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res. 1998;22:279–94.

    PubMed  CAS  Google Scholar 

  5. Rasmussen C. Executive functioning and working memory in fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2005;29:1359–67.

    PubMed  Google Scholar 

  6. Kodituwakku PW. Defining the behavioral phenotype in children with fetal alcohol spectrum disorders: a review. Neurosci Biobehav Rev. 2007;31:192–201.

    PubMed  CAS  Google Scholar 

  7. Stratton K, Howe C, Battagila F, editors. Fetal alcohol syndrome: diagnosis, epidemiology, prevention, and treatment. Washington: National Academy Press; 1996.

  8. May PA, Gossage JP. Estimating the prevalence of fetal alcohol syndrome. Alcohol Res Health. 2001;25:159–67.

    PubMed  CAS  Google Scholar 

  9. Nash K, Sheard E, Rovet J, Koren G. Understanding fetal alcohol spectrum disorders (FASDs): toward identification of a behavioral phenotype. Scientific World Journal. 2008;8:873–82.

    PubMed  Google Scholar 

  10. Sampson PD, Streissguth AP, Bookstein FL, Little RE, Clarren SK, Dehaene P, et al. Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology. 1997;56:317–26.

    PubMed  CAS  Google Scholar 

  11. Lupton C, Burd L, Harwood R. Cost of fetal alcohol spectrum disorders. Am J Med Genet C Semin Med Genet. 2004;127C:42–50.

    PubMed  Google Scholar 

  12. Mattson SN, Riley EP, Jernigan TL, Garcia A, Kaneko WM, Ehlers CL, et al. A decrease in the size of the basal ganglia following prenatal alcohol exposure: a preliminary report. Neurotoxicol Teratol. 1994;16:283–9.

    PubMed  CAS  Google Scholar 

  13. Mattson SN, Riley EP, Sowell ER, Jernigan TL, Sobel DF, Jones KL. A decrease in the size of the basal ganglia in children with fetal alcohol syndrome. Alcohol Clin Exp Res. 1996;20:1088–93.

    PubMed  CAS  Google Scholar 

  14. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I–V. Alcohol Clin Exp Res. 1996;20:31–4.

    PubMed  CAS  Google Scholar 

  15. Autti-Rämö I, Autti T, Korkman M, Kettunen S, Salonen O, Valanne L. MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol. 2002;44:98–106.

    PubMed  Google Scholar 

  16. Astley SJ, Aylward EH, Olson HC, Kerns K, Brooks A, Coggins TE, et al. Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2009;33:1671–89.

    PubMed  Google Scholar 

  17. Norman AL, Crocker N, Mattson SN, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. Dev Disabil Res Rev. 2009;15:209–17.

    PubMed  Google Scholar 

  18. West JR. Acute and long-term changes in the cerebellum following developmental exposure to ethanol. Alcohol Alcohol Suppl. 1993;2:199–202.

    PubMed  CAS  Google Scholar 

  19. Napper RM, West JR. Permanent neuronal cell loss in the cerebellum of rats exposed to continuous low blood alcohol levels during the brain growth spurt: a stereological investigation. J Comp Neurol. 1995;362:283–92.

    PubMed  CAS  Google Scholar 

  20. Maier SE, West JR. Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol. 2001;23:49–57.

    PubMed  CAS  Google Scholar 

  21. Maier SE, Miller JA, Blackwell JM, West JR. Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge-like alcohol exposure during brain development. Alcohol Clin Exp Res. 1999;23:726–34.

    PubMed  CAS  Google Scholar 

  22. Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972;145:353–97.

    PubMed  CAS  Google Scholar 

  23. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972;145:399–63.

    PubMed  CAS  Google Scholar 

  24. Altman J. Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol. 1972;145:465–13.

    PubMed  CAS  Google Scholar 

  25. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3:79–83.

    PubMed  CAS  Google Scholar 

  26. Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14:83–144.

    PubMed  CAS  Google Scholar 

  27. Bonthius DJ, West JR. Alcohol-induced neuronal loss in developing rats: increased brain damage with binge exposure. Alcohol Clin Exp Res. 1990;14:107–18.

    PubMed  CAS  Google Scholar 

  28. Maier SE, Chen WJ, Miller JA, West JR. Fetal alcohol exposure and temporal vulnerability: regional differences in alcohol-induced microencephaly as a function of the timing of binge-like alcohol exposure during rat brain development. Alcohol Clin Exp Res. 1997;21:1418–28.

    PubMed  CAS  Google Scholar 

  29. Young C, Olney JW. Neuroapoptosis in the infant mouse brain triggered by a transient small increase in blood alcohol concentration. Neurobiol Dis. 2006;22:548–54.

    PubMed  CAS  Google Scholar 

  30. Lancaster FE, Phillips SM, Patsalos PN, Wiggins RC. Brain myelination in the offspring of ethanol-treated rats: in utero versus lactational exposure by crossfostering offspring of control, pairfed and ethanol treated dams. Brain Res. 1984;309:209–16.

    PubMed  CAS  Google Scholar 

  31. Melcer T, Gonzalez D, Riley EP. Hyperactivity in preweanling rats following postnatal alcohol exposure. Alcohol. 1994;11:41–5.

    PubMed  CAS  Google Scholar 

  32. Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, et al. Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis. 2004;17:403–14.

    PubMed  CAS  Google Scholar 

  33. Karaçay B, Li S, Bonthius DJ. Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss and gene expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res. 2008;32:1439–50.

    PubMed  Google Scholar 

  34. Green JT. The effects of ethanol on the developing cerebellum and eyeblink classical conditioning. Cerebellum. 2004;3:178–87.

    PubMed  CAS  Google Scholar 

  35. Dikranian K, Qin YQ, Labruyere J, Nemmers B, Olney JW. Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Brain Res Dev Brain Res. 2005;155:1–13.

    PubMed  CAS  Google Scholar 

  36. Bauer-Moffett C, Altman J. The effect of ethanol chronically administered to preweanling rats on cerebellar development: a morphological study. Brain Res. 1977;119:249–68.

    PubMed  CAS  Google Scholar 

  37. Hamre KM, West JR. The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcohol Clin Exp Res. 1993;17:610–22.

    PubMed  CAS  Google Scholar 

  38. Bäckman C, West JR, Mahoney JC, Palmer MR. Electrophysiological characterization of cerebellar neurons from adult rats exposed to ethanol during development. Alcohol Clin Exp Res. 1998;22:1137–45.

    PubMed  Google Scholar 

  39. Pantazis NJ, Dohrman DP, Goodlett CR, Cook RT, West JR. Vulnerability of cerebellar granule cells to alcohol-induced cell death diminishes with time in culture. Alcohol Clin Exp Res. 1993;17:1014–21.

    PubMed  CAS  Google Scholar 

  40. Luo J, West JR, Pantazis NJ. Nerve growth factor and basic fibroblast growth factor protect rat cerebellar granule cells in culture against ethanol-induced cell death. Alcohol Clin Exp Res. 1997;21:1108–20.

    PubMed  CAS  Google Scholar 

  41. Thomas JD, Goodlett CR, West JR. Alcohol-induced Purkinje cell loss depends on developmental timing of alcohol exposure and correlates with motor performance. Brain Res Dev Brain Res. 1998;105:159–66.

    PubMed  CAS  Google Scholar 

  42. Siler-Marsiglio KI, Paiva M, Madorsky I, Pan Q, Shaw G, Heaton MB. Functional mechanisms of apoptosis-related proteins in neonatal rat cerebellum are differentially influenced by ethanol at postnatal days 4 and 7. J Neurosci Res. 2005;81:632–43.

    PubMed  CAS  Google Scholar 

  43. Joshi S, Guleria RS, Pan J, Bayless KJ, Davis GE, Dipette D, et al. Ethanol impairs Rho GTPase signaling and differentiation of cerebellar granule neurons in a rodent model of fetal alcohol syndrome. Cell Mol Life Sci. 2006;63:2859–70.

    PubMed  CAS  Google Scholar 

  44. Castoldi AF, Barni S, Randine G, Costa LG, Manzo L. Ethanol selectively interferes with the trophic action of NMDA and carbachol on cultured cerebellar granule neurons undergoing apoptosis. Brain Res Dev Brain Res. 1998;111:279–89.

    PubMed  CAS  Google Scholar 

  45. Zhang FX, Rubin R. N-methyl-d-aspartate inhibits apoptosis through activation of phosphatidylinositol 3-kinase in cerebellar granule neurons. A role for insulin receptor substrate-1 in the neurotrophic action of N-methyl-d-aspartate and its inhibition by ethanol. J Biol Chem. 1998;273:26596–602.

    PubMed  CAS  Google Scholar 

  46. Zhang FX, Rubin R, Rooney TA. Ethanol induces apoptosis in cerebellar granule neurons by inhibiting insulin-like growth factor 1 signaling. J Neurochem. 1998;71:196–204.

    PubMed  CAS  Google Scholar 

  47. Bhave SV, Ghoda L, Hoffman PL. Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci. 1999;19:3277–86.

    PubMed  CAS  Google Scholar 

  48. Oberdoerster J, Rabin RA. Enhanced caspase activity during ethanol-induced apoptosis in rat cerebellar granule cells. Eur J Pharmacol. 1999;385:273–82.

    PubMed  CAS  Google Scholar 

  49. Saito M, Saito M, Berg MJ, Guidotti A, Marks N. Gangliosides attenuate ethanol-induced apoptosis in rat cerebellar granule neurons. Neurochem Res. 1999;24:1107–15.

    PubMed  CAS  Google Scholar 

  50. Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M, et al. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci USA. 2002;99:6398–403.

    PubMed  CAS  Google Scholar 

  51. Bhave SV, Hoffman PL. Ethanol promotes apoptosis in cerebellar granule cells by inhibiting the trophic effect of NMDA. J Neurochem. 1997;68:578–86.

    PubMed  CAS  Google Scholar 

  52. Siler-Marsiglio KI, Shaw G, Heaton MB. Pycnogenol and vitamin E inhibit ethanol-induced apoptosis in rat cerebellar granule cells. J Neurobiol. 2004;59:261–71.

    PubMed  CAS  Google Scholar 

  53. Tizabi Y, Manaye KF, Taylor RE. Nicotine blocks ethanol-induced apoptosis in primary cultures of rat cerebral cortical and cerebellar granule cells. Neurotox Res. 2005;7:319–22.

    PubMed  CAS  Google Scholar 

  54. Balázs R, Gallo V, Kingsbury A. Effect of depolarization on the maturation of cerebellar granule cells in culture. Brain Res. 1988;468:269–76.

    PubMed  Google Scholar 

  55. Balázs R, Jørgensen OS, Hack N. N-methyl-d-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience. 1988;27:437–51.

    PubMed  Google Scholar 

  56. Bhave SV, Snell LD, Tabakoff B, Hoffman PL. Chronic ethanol exposure attenuates the anti-apoptotic effect of NMDA in cerebellar granule neurons. J Neurochem. 2000;75:1035–44.

    PubMed  CAS  Google Scholar 

  57. Hoffman PL. NMDA receptors in alcoholism. Int Rev Neurobiol. 2003;56:35–82.

    PubMed  CAS  Google Scholar 

  58. Pantazis NJ, West JR, Dai D. The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cell survival of cerebellar granule cells in culture and protecting the cells against ethanol neurotoxicity. J Neurochem. 1998;70:1826–38.

    PubMed  CAS  Google Scholar 

  59. Bonthius DJ, Luong T, Bonthius NE, Hostager BS, Karacay B. Nitric oxide utilizes NF-kappaB to signal its neuroprotective effect against alcohol toxicity. Neuropharmacology. 2009;56:716–31.

    PubMed  CAS  Google Scholar 

  60. Pantazis NJ, Dohrman DP, Luo J, Thomas JD, Goodlett CR, West JR. NMDA prevents alcohol-induced neuronal cell death of cerebellar granule cells in culture. Alcohol Clin Exp Res. 1995;19:846–53.

    PubMed  CAS  Google Scholar 

  61. Cebere A, Liljequist S. Ethanol differentially inhibits homoquinolinic acid- and NMDA-induced neurotoxicity in primary cultures of cerebellar granule cells. Neurochem Res. 2003;28:1193–9.

    PubMed  CAS  Google Scholar 

  62. Luo J, Miller MW. Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res Brain Res Rev. 1998;27:157–67.

    PubMed  CAS  Google Scholar 

  63. de la Monte SM, Wands JR. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci. 2002;59:882–93.

    PubMed  Google Scholar 

  64. de la Monte SM, Xu XJ, Wands JR. Ethanol inhibits insulin expression and actions in the developing brain. Cell Mol Life Sci. 2005;62:1131–45.

    PubMed  Google Scholar 

  65. Hallak H, Seiler AE, Green JS, Henderson A, Ross BN, Rubin R. Inhibition of insulin-like growth factor-I signaling by ethanol in neuronal cells. Alcohol Clin Exp Res. 2001;25:1058–64.

    PubMed  CAS  Google Scholar 

  66. Light KE, Ge Y, Belcher SM. Early postnatal ethanol exposure selectively decreases BDNF and truncated TrkB-T2 receptor mRNA expression in the rat cerebellum. Brain Res Mol Brain Res. 2001;93:46–55.

    PubMed  CAS  Google Scholar 

  67. Ge Y, Belcher SM, Light KE. Alterations of cerebellar mRNA specific for BDNF, p75NTR, and TrkB receptor isoforms occur within hours of ethanol administration to 4-day-old rat pups. Brain Res Dev Brain Res. 2004;151:99–109.

    PubMed  CAS  Google Scholar 

  68. Heaton MB, Mitchell JJ, Paiva M. Ethanol-induced alterations in neurotrophin expression in developing cerebellum: relationship to periods of temporal susceptibility. Alcohol Clin Exp Res. 1999;23:1637–42.

    PubMed  CAS  Google Scholar 

  69. Heaton MB, Madorsky I, Paiva M, Siler-Marsiglio KI. Ethanol-induced reduction of neurotrophin secretion in neonatal rat cerebellar granule cells is mitigated by vitamin E. Neurosci Lett. 2004;370:51–4.

    PubMed  CAS  Google Scholar 

  70. Li Z, Ding M, Thiele CJ, Luo J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience. 2004;126:149–62.

    PubMed  CAS  Google Scholar 

  71. Ohrtman JD, Stancik EK, Lovinger DM, Davis MI. Ethanol inhibits brain-derived neurotrophic factor stimulation of extracellular signal-regulated/mitogen-activated protein kinase in cerebellar granule cells. Alcohol. 2006;39:29–37.

    PubMed  CAS  Google Scholar 

  72. Yamamoto M, Ullman D, Drager UC, McCaffery P. Postnatal effects of retinoic acid on cerebellar development. Neurotoxicol Teratol. 1999;21:141–6.

    PubMed  CAS  Google Scholar 

  73. Parenti R, Cicirata F. Retinoids and binding proteins in the cerebellum during lifetime. Cerebellum. 2004;3:16–20.

    PubMed  CAS  Google Scholar 

  74. McCaffery PJ, Adams J, Maden M, Rosa-Molinar E. Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci. 2003;18:457–72.

    PubMed  CAS  Google Scholar 

  75. Kumar A, Singh CK, DiPette DD, Singh US. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2010;34:928–37.

    PubMed  CAS  Google Scholar 

  76. Chu J, Tong M, de la Monte SM. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol. 2007;113:659–73.

    PubMed  CAS  Google Scholar 

  77. Nowoslawski L, Klocke BJ, Roth KA. Molecular regulation of acute ethanol-induced neuron apoptosis. J Neuropathol Exp Neurol. 2005;64:490–7.

    PubMed  CAS  Google Scholar 

  78. Soane L, Fiskum G. Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J Bioenerg Biomembr. 2005;37:179–90.

    PubMed  CAS  Google Scholar 

  79. Moore DB, Walker DW, Heaton MB. Neonatal ethanol exposure alters Bcl-2 family mRNA levels in the rat cerebellar vermis. Alcohol Clin Exp Res. 1999;23:1251–61.

    PubMed  CAS  Google Scholar 

  80. Heaton MB, Moore DB, Paiva M, Madorsky I, Mayer J, Shaw G. The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcohol Clin Exp Res. 2003;27:657–69.

    PubMed  CAS  Google Scholar 

  81. Ge Y, Belcher SM, Pierce DR, Light KE. Altered expression of Bcl2, Bad and Bax mRNA occurs in the rat cerebellum within hours after ethanol exposure on postnatal day 4 but not on postnatal day 9. Brain Res Mol Brain Res. 2004;129:124–34.

    PubMed  CAS  Google Scholar 

  82. Heaton MB, Paiva M, Madorsky I, Siler-Marsiglio K, Shaw G. Effect of bax deletion on ethanol sensitivity in the neonatal rat cerebellum. J Neurobiol. 2006;66:95–101.

    PubMed  CAS  Google Scholar 

  83. Heaton MB, Moore DB, Paiva M, Gibbs T, Bernard O. Bcl-2 overexpression protects the neonatal cerebellum from ethanol neurotoxicity. Brain Res. 1999;817:13–8.

    PubMed  CAS  Google Scholar 

  84. Luo J. GSK3beta in ethanol neurotoxicity. Mol Neurobiol. 2009;40:108–21.

    PubMed  CAS  Google Scholar 

  85. Zhong J, Yang X, Yao W, Lee W. Lithium protects ethanol-induced neuronal apoptosis. Biochem Biophys Res Commun. 2006;350:905–10.

    PubMed  CAS  Google Scholar 

  86. O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda). 2005;20:303–15.

    Google Scholar 

  87. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077–99.

    PubMed  CAS  Google Scholar 

  88. Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum. 2008;7:332–47.

    PubMed  CAS  Google Scholar 

  89. Heaton MB, Paiva M, Mayer J, Miller R. Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett. 2002;334:83–6.

    PubMed  CAS  Google Scholar 

  90. Smith AM, Zeve DR, Grisel JJ, Chen WJ. Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. Brain Res Dev Brain Res. 2005;160:231–8.

    PubMed  CAS  Google Scholar 

  91. Kane CJ, Chang JY, Roberson PK, Garg TK, Han L. Ethanol exposure of neonatal rats does not increase biomarkers of oxidative stress in isolated cerebellar granule neurons. Alcohol. 2008;42:29–36.

    PubMed  CAS  Google Scholar 

  92. Martin PR, Singleton CK, Hiller-Sturmhöfel S. The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health. 2003;27:134–42.

    PubMed  Google Scholar 

  93. Harper C. The neuropathology of alcohol-related brain damage. Alcohol Alcohol. 2009;44:136–40.

    PubMed  CAS  Google Scholar 

  94. Mulholland PJ. Susceptibility of the cerebellum to thiamine deficiency. Cerebellum. 2006;5:55–63.

    PubMed  CAS  Google Scholar 

  95. Mulholland PJ, Self RL, Stepanyan TD, Little HJ, Littleton JM, Prendergast MA. Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro. Neuroscience. 2005;135:1129–39.

    PubMed  CAS  Google Scholar 

  96. Ke ZJ, Wang X, Fan Z, Luo J. Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. Alcohol Clin Exp Res. 2009;33:1097–103.

    PubMed  CAS  Google Scholar 

  97. Chen G, Ma C, Bower KA, Ke Z, Luo J. Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J Biol Chem. 2006;281:15909–15.

    PubMed  CAS  Google Scholar 

  98. Wang X, Fan Z, Wang B, Luo J, Ke ZJ. Activation of double-stranded RNA-activated protein kinase by mild impairment of oxidative metabolism in neurons. J Neurochem. 2007;103:2380–90.

    PubMed  CAS  Google Scholar 

  99. Mathie A, Clarke CE, Ranatunga KM, Veale EL. What are the roles of the many different types of potassium channel expressed in cerebellar granule cells? Cerebellum. 2003;2:11–25.

    PubMed  CAS  Google Scholar 

  100. Mei YA, Vaudry D, Basille M, Castel H, Fournier A, Vaudry H, et al. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP. Eur J Neurosci. 2004;19:1446–58.

    PubMed  CAS  Google Scholar 

  101. Lefebvre T, Gonzalez BJ, Vaudry D, Desrues L, Falluel-Morel A, Aubert N, et al. Paradoxical effect of ethanol on potassium channel currents and cell survival in cerebellar granule neurons. J Neurochem. 2009;110:976–89.

    PubMed  CAS  Google Scholar 

  102. Li Z, Lin H, Zhu Y, Wang M, Luo J. Disruption of cell cycle kinetics and cyclin-dependent kinase system by ethanol in cultured cerebellar granule progenitors. Brain Res Dev Brain Res. 2001;132:47–58.

    PubMed  CAS  Google Scholar 

  103. Li Z, Miller MW, Luo J. Effects of prenatal exposure to ethanol on the cyclin-dependent kinase system in the developing rat cerebellum. Brain Res Dev Brain Res. 2002;139:237–45.

    PubMed  CAS  Google Scholar 

  104. Liesi P. Ethanol-exposed central neurons fail to migrate and undergo apoptosis. J Neurosci Res. 1997;48:439–48.

    PubMed  CAS  Google Scholar 

  105. Luo J. The role of matrix metalloproteinases in the morphogenesis of the cerebellar cortex. Cerebellum. 2005;4:239–45.

    PubMed  CAS  Google Scholar 

  106. Jiang Y, Kumada T, Cameron DB, Komuro H. Cerebellar granule cell migration and the effects of alcohol. Dev Neurosci. 2008;30:7–23.

    PubMed  Google Scholar 

  107. González-Burgos I, Alejandre-Gómez M. Cerebellar granule cell and Bergmann glial cell maturation in the rat is disrupted by pre- and post-natal exposure to moderate levels of ethanol. Int J Dev Neurosci. 2005;23:383–8.

    PubMed  Google Scholar 

  108. de la Monte SM, Tong M, Carlson RI, Carter JJ, Longato L, Silbermann E, et al. Ethanol inhibition of aspartyl-asparaginyl-beta-hydroxylase in fetal alcohol spectrum disorder: potential link to the impairments in central nervous system neuronal migration. Alcohol. 2009;43:225–40.

    PubMed  Google Scholar 

  109. Bhave SV, Hoffman PL. Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. J Neurochem. 2004;88:359–69.

    PubMed  CAS  Google Scholar 

  110. Botia B, Basille M, Allais A, Raoult E, Falluel-Morel A, Galas L, et al. Neurotrophic effects of PACAP in the cerebellar cortex. Peptides. 2007;28:1746–52.

    PubMed  CAS  Google Scholar 

  111. Botia B, Jolivel V, Burel D, Le Joncour V, Roy V, Naassila M, Bénard M, Fournier A, Vaudry H, Vaudry D. Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotox Res. 2010 (in press).

  112. Bonthius DJ, Bonthius NE, Li S, Karacay B. The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NF-kappaB. Neurotoxicology. 2008;29:1080–91.

    PubMed  CAS  Google Scholar 

  113. Bonthius DJ, Karacay B, Dai D, Pantazis NJ. FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures. Brain Res Dev Brain Res. 2003;140:15–28.

    PubMed  CAS  Google Scholar 

  114. Bearer CF. L1 cell adhesion molecule signal cascades: targets for ethanol developmental neurotoxicity. Neurotoxicology. 2001;22:625–33.

    PubMed  CAS  Google Scholar 

  115. Gubitosi-Klug R, Larimer CG, Bearer CF. L1 cell adhesion molecule is neuroprotective of alcohol induced cell death. Neurotoxicology. 2007;28:457–62.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Kimberly Bower for reading this manuscript. This research was supported by grants from the National Institutes of Health (AA015407, AA019693 and AA017226).

Disclosure of potential conflicts of interest

I do not have any potential conflicts of interest for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J. Mechanisms of Ethanol-Induced Death of Cerebellar Granule Cells. Cerebellum 11, 145–154 (2012). https://doi.org/10.1007/s12311-010-0219-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0219-0

Keywords

Navigation