Skip to main content

Advertisement

Log in

Quantitative prediction of tumor response to neoadjuvant chemotherapy in breast cancer: novel marker genes and prediction model using the expression levels

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

In breast cancer, the identification of accurate predictors of tumor response to neoadjuvant chemotherapy is of key importance, but none of the critical markers have been validated to date. We attempted to identify potent marker genes genome-wide, and we developed a prediction model for individual response to epirubicin (EPI)/cyclophosphamide (CPM) combination chemotherapy (EC).

Methods

From 10 human breast cancer cell lines, genes whose expression levels correlated with cytotoxicities of EPI and CPM were chosen through comprehensive gene expression analysis followed by correlation–confirmation study of the quantified expression levels analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR).

Results

We finally selected a total of 4 genes (ANXA1 and PRKCA for EPI; DUSP2 and SERPINA3 for CPM) as reliable prediction markers. Using quantified expression data of genes in 18 tumor samples, we performed multiple linear regression analysis to establish the best linear model that could convert the quantified expression data to show tumor response to the EC therapy (the ratio of tumor size to the baseline, %). Outliers were identified by referring to the value of AIC (Akaike’s information criterion) for each sample (AIC/sample) or checking residuals graphically. The multiple linear regression analysis of the selected genes yielded 2 highly predictive formulae for the tumor response: one used all of the genes except SERPINA3 (R = 0.8348, AIC/sample = 4.9182) and the other used all of the 4 genes (R = 0.8224, AIC/sample = 5.0730).

Conclusions

A study to validate the predictive values of the selected 4 genes is now planned, along with research to determine their functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horiguchi J. New trends in primary systemic therapy for breast cancer. Breast Cancer 2010; Epub ahead of print, doi:10.1007/s12282-010-0243-4.

  2. Benson JR, Jatoi I, Keisch M, Esteva FJ, Makris A, Jordan VC. Early breast cancer. Lancet. 2009;373:1463–79.

    Article  PubMed  Google Scholar 

  3. Kinoshita T. Preoperative therapy: recent findings. Breast Cancer 2010; Epub ahead of print doi:10.1007/s12282-010-0227-4.

  4. Untch M, von Minckwitz G. Recent advances in systemic therapy: advances in neoadjuvant (primary) systemic therapy with cytotoxic agents. Breast Cancer Res. 2009;11:203.

    Article  PubMed  Google Scholar 

  5. Colleoni M, Viale G, Goldhirsch A. Lessons on responsiveness to adjuvant systemic therapies learned from the neoadjuvant setting. Breast. 2009;18(Suppl 3):S137–40.

    Article  PubMed  Google Scholar 

  6. Beasley GM, Olson JA Jr. What’s new in neoadjuvant therapy for breast cancer? Adv Surg. 2010;44:199–228.

    Article  PubMed  Google Scholar 

  7. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer—current status and future directions. Ann Oncol. 2009;20:1913–27.

    Article  PubMed  CAS  Google Scholar 

  8. Shenoy HG, Peter MB, Masannat YA, Dall BJ, Dodwell D, Horgan K. Practical advice on clinical decision making during neoadjuvant chemotherapy for primary breast cancer. Surg Oncol. 2009;18:65–71.

    Article  PubMed  CAS  Google Scholar 

  9. Liu SV, Melstrom L, Yao K, Russell CA, Sener SF. Neoadjuvant therapy for breast cancer. J Surg Oncol. 2010;101:283–91.

    Article  PubMed  CAS  Google Scholar 

  10. Munro AF, Cameron DA, Bartlett JM. Targeting anthracyclines in early breast cancer: new candidate predictive biomarkers emerge. Oncogene. 2010;29:5231–40.

    Article  PubMed  CAS  Google Scholar 

  11. Bartlett JM, Munro AF, Dunn JA, McConkey C, Jordan S, Twelves CJ, et al. Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK National Epirubicin Adjuvant Trial (NEAT/BR9601). Lancet Oncol. 2010;11:266–74.

    Article  PubMed  CAS  Google Scholar 

  12. Marsh S, Liu G. Pharmacokinetics and pharmacogenomics in breast cancer chemotherapy. Adv Drug Deliv Rev. 2009;61:381–7.

    Article  PubMed  CAS  Google Scholar 

  13. Baek HM, Chen JH, Nie K, Yu HJ, Bahri S, Mehta RS, et al. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology. 2009;251:653–62.

    Article  PubMed  Google Scholar 

  14. Tanioka M, Shimizu C, Yonemori K, Yoshimura K, Tamura K, Kouno T, et al. Predictors of recurrence in breast cancer patients with a pathologic complete response after neoadjuvant chemotherapy. Br J Cancer. 2010;103:297–302.

    Article  PubMed  CAS  Google Scholar 

  15. Chuthapisith S, Eremin JM, Eremin O. Predicting response to neoadjuvant chemotherapy in breast cancer: molecular imaging, systemic biomarkers and the cancer metabolome (Review). Oncol Rep. 2008;20:699–703.

    PubMed  Google Scholar 

  16. Tanaka T, Tanimoto K, Otani K, Satoh K, Ohtaki M, Yoshida K, et al. Concise prediction models of anticancer efficacy of 8 drugs using expression data from 12 selected genes. Int J Cancer. 2004;11:617–26.

    Article  Google Scholar 

  17. Komatsu M, Hiyama K, Tanimoto K, Yunokawa M, Otani K, Ohtaki M, et al. Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers. Mol Cancer Ther. 2006;5:767–75.

    Article  PubMed  CAS  Google Scholar 

  18. Shimokuni T, Tanimoto K, Hiyama K, Otani K, Ohtaki M, Hihara J, et al. Chemosensitivity prediction in esophageal squamous cell carcinoma: novel marker genes and efficacy-prediction formulae using their expression data. Int J Oncol. 2006;28:1153–62.

    PubMed  CAS  Google Scholar 

  19. Fumoto S, Shimokuni T, Tanimoto K, Hiyama K, Otani K, Ohtaki M, et al. Selection of a novel drug-response predictor in esophageal cancer: a novel screening method using microarray and identification of IFITM1 as a potent marker gene of CDDP response. Int J Oncol. 2008;32:413–23.

    PubMed  CAS  Google Scholar 

  20. Nishiyama M, Eguchi H. Pharmacokinetics and pharmacogenomics in gastric cancer chemotherapy. Adv Drug Deliv Rev. 2009;61:402–7.

    Article  PubMed  CAS  Google Scholar 

  21. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A. 2001;98:10787–92.

    Article  PubMed  CAS  Google Scholar 

  22. McLeod HL, Evans WE. Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol. 2001;41:101–21.

    Article  PubMed  CAS  Google Scholar 

  23. Rousseeuw PJ. Least median of squares regression. J Am Stat Assoc. 1984;79:871–80.

    Article  Google Scholar 

  24. Turaga K, Acs G, Laronga C. Gene expression profiling in breast cancer. Cancer Control. 2010;17:177–82.

    PubMed  Google Scholar 

  25. Perou CM, Børresen-Dale AL. Systems biology and genomics of breast cancer. Cold Spring Harb Perspect Biol 2010; Epub ahead of print doi:10.1101/cshperspect.a003293.

  26. Ou K, Yu K, Kesuma D, Hooi M, Huang N, Chen W, et al. Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping. J Proteome Res. 2008;7:1518–28.

    Article  PubMed  CAS  Google Scholar 

  27. Bergman PJ, Gravitt KR, Ward NE, Beltran P, Gupta KP, O’Brian CA. Potent induction of human colon cancer uptake of chemotherapeutic drugs by N-myristoylated protein kinase C-alpha (PKC-alpha) pseudosubstrate peptides through a P-glycoprotein-independent mechanism. Invest New Drugs. 1997;15:311–8.

    Article  PubMed  CAS  Google Scholar 

  28. Gravitt KR, Ward NE, Fan D, Skibber JM, Levin B, O’Brian CA. Evidence that protein kinase C-alpha activation is a critical event in phorbol ester-induced multiple drug resistance in human colon cancer cells. Biochem Phamacol. 1994;48:375–81.

    Article  CAS  Google Scholar 

  29. Chen Y, Yu G, Yu D, Zhu M. PKCalpha-induced drug resistance in pancreatic cancer cells is associated with transforming growth factor-beta1. J Exp Clin Cancer Res. 2010;29:104.

    Article  PubMed  Google Scholar 

  30. Bermudez O, Pagès G, Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol. 2010;299:C189–202.

    Article  PubMed  CAS  Google Scholar 

  31. Baker C, Belbin O, Kalsheker N, Morgan K. SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci. 2007;12:2821–35.

    Article  PubMed  CAS  Google Scholar 

  32. Cimino D, Fuso L, Sfiligoi C, Biglia N, Ponzone R, Maggiorotto F, et al. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer. 2008;123:1327–38.

    Article  PubMed  CAS  Google Scholar 

  33. Pohl A, Lurje G, Manegold PC, Lenz HJ. Pharmacogenomics and -genetics in colorectal cancer. Adv Drug Deliv Rev. 2009;61:375–80.

    Article  PubMed  CAS  Google Scholar 

  34. Ruzzo A, Graziano F, Kawakami K, Watanabe G, Santini D, Catalano V, et al. Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J Clin Oncol. 2006;24:1883–91.

    Article  PubMed  CAS  Google Scholar 

  35. Lu JW, Gao CM, Wu JZ, Cao HX, Tajima K, Feng JF. Polymorphism in the 3′-untranslated region of the thymidylate synthase gene and sensitivity of stomach cancer to fluoropyrimidine-based chemotherapy. J Hum Genet. 2006;51:155–60.

    Article  PubMed  CAS  Google Scholar 

  36. Ichikawa W, Takahashi T, Suto K, Shirota Y, Nihei Z, Shimizu M, et al. Simple combinations of 5-FU pathway genes predict the outcome of metastatic gastric cancer patients treated by S-1. Int J Cancer. 2006;119:1927–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Toshiaki Saeki received honoraria (such as lecture fees) from Chugai Pharmaceutical Co. Ltd. and research funding from Pfizer Japan Inc. (prediction of chemosensitivity for breast cancer) and from Chugai Pharmaceutical Co. Ltd. (QOL of breast cancer patients).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Nishiyama.

About this article

Cite this article

Sano, H., Wada, S., Eguchi, H. et al. Quantitative prediction of tumor response to neoadjuvant chemotherapy in breast cancer: novel marker genes and prediction model using the expression levels. Breast Cancer 19, 37–45 (2012). https://doi.org/10.1007/s12282-011-0263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-011-0263-8

Keywords

Navigation