Skip to main content
Log in

In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10−7, 1.4×10−7, and 1.3×10−8, respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anadón, A., Martínez-Larrañaga, M.R., and Aranzazu Martínez, M. 2006. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul. Toxicol. Pharmacol. 45, 91–95.

    Article  PubMed  Google Scholar 

  • Bertram, J., Strätz, M., and Dürre, P. 1991. Natural transfer of conjugative transposon Tn916 between Gram-positive and Gram-negative bacteria. J. Bacteriol. 173, 443–448.

    PubMed  CAS  Google Scholar 

  • Bruinsma, N., Stobberingh, E., de Smet, P., and van den Bogaard, A. 2003. Antibiotic use and the prevalence of antibiotic resistance in bacteria from healthy volunteers in the dutch community. Infection 31, 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Chopra, I. and Roberts, M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260.

    Article  PubMed  CAS  Google Scholar 

  • Christie, P.J., Korman, R.Z., Zahler, S.A., Adsit, J.C., and Dunny, G.M. 1987. Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J. Bacteriol. 169, 2529–2536.

    PubMed  CAS  Google Scholar 

  • CLSI. 2008. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals (M31-A3), Third Edition.

  • Davison, J. 1999. Genetic exchange between bacteria in the environment. Plasmid 42, 73–91.

    Article  PubMed  CAS  Google Scholar 

  • FAO/ WHO. 2002. Guidelines for the Evaluation of Probiotics in Food. http://www.who.int/entity/foodsafety/fs_management/en/probiotic_guidelines.pdf

  • Foster, P.L. 2007. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397.

    Article  PubMed  CAS  Google Scholar 

  • Galopin, S., Cattoir, V., and Leclercq, R. 2009. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol. Lett. 296, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H.A., Duc, H., and Cutting, S.M. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H.A., Huang, J.M., Khaneja, R., Hiep, L.V., Urdaci, M.C., and Cutting, S.M. 2008. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105, 510–520.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino, T., Ikeda, T., Tomizuka, N., and Furukawa, K. 1985. Nucleotide sequence of the tetracycline resistance gene of pTHT15, a thermophilic Bacillus plasmid: comparison with staphylococcal TcR controls. Gene 37, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, L., Wilcks, A., Hammer, K., Huys, G., Gevers, D., and Andersen, S.R. 2007. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol. Ecol. 59, 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Jindal, A., Kocherginskaya, S., Mehboob, A., Robert, M., Mackie, R.I., Raskin, L., and Zilles, J.L. 2006. Antimicrobial use and resistance in swine waste treatment systems. Appl. Environ. Microbiol. 72, 7813–7820.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, H. and Sørum, H. 1994. Transfer of multiresistance plasmids between bacteria of diverse origin in natural micro-environments. Appl. Environ. Microbiol. 60, 4015–4021.

    PubMed  CAS  Google Scholar 

  • Levy, S.B. and Marshall, B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–129.

    Article  PubMed  CAS  Google Scholar 

  • Mater, D.D., Langella, P., Corthier, G., and Flores, M.J. 2008. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J. Mol. Microbiol. Biotechnol. 14, 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Matic, I., Taddei, F., and Radman, M. 1996. Geneticbarriers among bacteria. Trends Microbiol. 4, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, W.J., Wisman, G.B., Terpstra, P., Thorsted, P.B., Thomas, C.M., Holsappel, S., Venema, G., and Bron, S. 1998. Rolling-circle plasmids from Bacillus subtilis: complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from Gram-positive bacteria. FEMS Microbiol. Rev. 21, 337–368.

    Article  PubMed  CAS  Google Scholar 

  • Milazzo, I., Speciale, A., Musumeci, R., Fazio, D., and Blandino, G. 2006. Identification and antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. New Microbiol. 29, 281–291.

    PubMed  CAS  Google Scholar 

  • Mountzouris, K.C., Tsirtsikos, P., Kalamara, E., Nitsch, S., Schatzmayr, G., and Fegeros, K. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 86, 309–317.

    PubMed  CAS  Google Scholar 

  • Mushtaq, S., Ge, Y., and Livermore, D.M. 2004. Doripenem versus Pseudomonas aeruginosa in vitro: Activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob. Agents Chemother. 48, 3086–3092.

    Article  PubMed  CAS  Google Scholar 

  • Ouoba, L.I., Lei, V., and Jensen, L.B. 2008. Resistanceof potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 121, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Pendleton, B. 2000. The regulatory environment-direct-fed microbial, enzyme & forage additive compendium. microbialcompendium.com.

  • Piddock, L.J., Griggs, D., Johnson, M.M., Ricci, V., Elviss, N.C., Williams, L.K., Jørgensen, F., Chisholm, S.A., Lawson, A.J., Swift, C., and et al. 2008. Persistence of Campylobacter species, strain types, antibiotic resistance and mechanisms of tetracycline resistance in poultry flocks treated with chlortetracycline. J. Antimicrob. Chemother. 62, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Prozorov, A.A. 2003. Conjugation in bacilli. Microbiology 72, 517–527.

    Article  CAS  Google Scholar 

  • Sakaguchi, R., Amano, H., and Shishido, K. 1988. Nucleotide sequence homology of the tetracycline-resistance determinant naturally maintained in Bacillus subtilis Marburg 168 chromosome and the tetracycline-resistance gene of B. subtilis plasmid pNS1981. Biochim. Biophys. Acta. 950, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, de Vos, W.M., Fonden, R., Saxelin, M., Collins, K., Mogensen, G., and et al. 1998. Demonstration of safety of probiotics. Int. J. Food Microbiol. 44, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Salyers, A.A., Gupta, A., and Wang, Y. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12, 412–416.

    Article  PubMed  CAS  Google Scholar 

  • Salyers, A.A. and Shoemaker, N.B. 1995. Conjugative transposons: the force behind the spread of antibiotic resistance genes among Bacteroides clinical isolates. Anaerobe 1, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • SCAN. 1999. Assessment by the scientific committee on animal nutrition (SCAN)(R) of a micro-organisms product: Esporafeed Plus® http://ec.europa.eu/food/fs/sc/scan/out39_en.pdf.

  • SCAN. 2002. Opinion of the scientific committee on animal nutrition on the use of Bacillus licheniformis NCTC 13123 in feeding stuffs for pigs (Product AlCareTM). http://ec.europa.eu/food/fs/sc/scan/out79_en.pdf.

  • SCAN. 2003. Opinion of the scientific committee on animal mutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance. http://ec.europa.eu/food/fs/sc/scan/out108_en.pdf

  • Simon, O., Vahjen, W., and Taras, D. 2007. Potentials of probiotics in pig nutrition. Feed Mix. 15, 25–27.

    Google Scholar 

  • Siriken, B., Bayram, I., and Onol, A.G. 2003. Effects of probiotics: alone and in a mixture of Biosacc® plus Zinc Bacitracin on the caecal microflora of Japanese quail. Res. Vet. Sci. 75, 9–14.

    Article  PubMed  Google Scholar 

  • Sorokulova, I.B., Pinchuk, I.V., Denayrolles, M., Osipova, I.G., Huang, J.M., Cutting, S.M., and Urdaci, M.C. 2008. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53, 954–963.

    Article  PubMed  Google Scholar 

  • Temmerman, R., Pot, B., Huys, G., and Swings, J. 2003. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 81, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, P. 1987. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol. Lett. 48, 289–294.

    Article  CAS  Google Scholar 

  • Wannaprasat, W., Koowatananukul, C., Ekkapobyotin, C., and Chuanchuen, R. 2009. Quality analysis of commercial probiotic products for food animals. Southeast Asian J. Trop. Med. Public Health 40, 1103–1112.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghui Yuan.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, M., Lu, J., Wang, Y. et al. In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis . J Microbiol. 50, 807–812 (2012). https://doi.org/10.1007/s12275-012-1454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1454-5

Keywords

Navigation