Skip to main content
Log in

Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Exposure to low temperatures induces the biosynthesis of specific sets of proteins, including cold shock proteins (Csps). Since many of the specific functions of pychrophilic Csps are unknown, the roles of Csps from an Arctic bacterium, Polaribacter irgensii KOPRI 22228, were examined. The genes encoding CspA and CspC of P. irgensii were cloned in this study. Sequence analysis showed that these proteins have cold shock domains containing two RNA-binding motifs, RNP1 and RNP2. Both proteins bound oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. When the P. irgensii Csps were overexpressed in Escherichia coli, the cold-resistance of the host was increased by more than five-fold. The P. irgensii Csps also rescued a cold-sensitive E. coli csp-quadruple deletion strain, BX04, at low temperatures. These results suggest that Csps from P. irgensii play a role in survival in polar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinkmeyer, R., K. Knittel, J. Jurgens, H. Weyland, R. Amann, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69, 6610–6619.

    Article  CAS  PubMed  Google Scholar 

  • D’Amico, S., T. Collins, J.C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Reports 7, 385–389.

    Article  PubMed  Google Scholar 

  • Ermolenko, D.N. and G.I. Makhatadze. 2002. Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59, 1902–1913.

    Article  CAS  PubMed  Google Scholar 

  • Feng, W., R. Tejero, D.E. Zimmerman, M. Inouye, and G.T. Montelione. 1998. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: Evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37, 10881–10896.

    Article  CAS  PubMed  Google Scholar 

  • Giaquinto, L., P.M.G. Curmi, K.S. Siddiqui, A. Poljak, E. DeLong, S. DasSarma, and R. Cavicchioli. 2007. Structure and function of cold shock proteins in Archaea. J. Bacteriol. 189, 5738–5748.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J., N.S. Pollitt, and M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Gumley, A.W. and W.E. Inniss. 1996. Cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Pseudomonas putida Q5 and its transconjugant. Can. J. Microbiol. 42, 798–803.

    Article  CAS  PubMed  Google Scholar 

  • Hillier, B.J., H.M. Rodriguez, and L.M. Gregoret. 1998. Coupling protein stability and protein function in Escherichia coli CspA. Fold. Des. 3, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196–202.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P.G. and M. Inouye. 1994. The cold-shock response-a hot topic. Mol. Microbiol. 11, 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P.G., R. Krah, S.R. Tafuri, and A.P. Wolffe. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174, 5798–5802.

    CAS  PubMed  Google Scholar 

  • Jones, P.G., R.A. VanBogelen, and F.C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169, 2092–2095.

    CAS  PubMed  Google Scholar 

  • Jung, C.H. and H. Im. 2003. A recombinant human α1-antitrypsin variant, M-malton, undergoes a spontaneous conformational conversion into a latent form. J. Microbiol. 41, 335–339.

    CAS  Google Scholar 

  • Jung, Y.H., J.Y. Yi, H. Jung, Y.K. Lee, H.K. Lee, M. Chinnamaranaicker, J.H. Uh, I.S. Jo, E.J. Jung, and H. Im. 2010. Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J. 29, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.J., Y.K. Lee, H.K. Lee, and H. Im. 2007. Characterization of cold-shock protein A of antarctic Streptomyces sp. AA8321. Protein J. 26, 51–59.

  • Michel, V., I. Lehoux, G. Depret, P. Anglade, J. Labadie, and M. Hebraud. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol. 179, 7331–7342.

    CAS  PubMed  Google Scholar 

  • Newkirk, K., W. Feng, W. Jiang, R. Tejero, S.D. Emerson, M. Inouye, and G.T. Montelione. 1994. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc. Natl. Acad. Sci. USA 91, 5114–5118.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare, S. 2004. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6, 125–136.

    CAS  PubMed  Google Scholar 

  • Phadtare, S., J. Hwang, K. Severinov, and M. Inouye. 2003. CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Genes Cells 8, 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Schindelin, H., M.A. Marahiel, and U. Heinemann. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 154–168.

    Article  Google Scholar 

  • Schindler, T., P.L. Graumann, D. Perl, S. Ma, F.X. Schmid, and M.A. Marahiel. 1999. The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J. Biol. Chem. 274, 3407–3413.

    CAS  Google Scholar 

  • Schröder, K., P. Graumann, A. Schnuchel, T.A. Holak, and M.A. Marahiel. 1995. Mutational analysis of the putative nucleic acidbinding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of singlestranded DNA containing the Y-box motif. Mol. Microbiol. 16, 699–708.

    Article  PubMed  Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Willimsky, G., H. Bang, G. Fischer, and M.A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174, 6326–6335.

    CAS  PubMed  Google Scholar 

  • Wouters, J.A., H. Frenkiel, W.M. deVos, O.P. Kuipers, and T. Abee. 2001. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl. Environ. Microbiol. 67, 5171–5178.

    Article  CAS  PubMed  Google Scholar 

  • Xia, B., H. Ke, and M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40, 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, K., W. Zheng, E. Crooke, Y.H. Wang, and M. Inouye. 2001. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol. Microbiol. 39, 1572–1584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uh, Jh., Jung, Y.H., Lee, Y.K. et al. Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228. J Microbiol. 48, 798–802 (2010). https://doi.org/10.1007/s12275-010-0402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0402-5

Keywords

Navigation