Skip to main content
Log in

Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium

  • Article
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

We isolated 864 bacteria from 553 soil samples and bioassayed them on cucumber and crown daisy for plant growth promotion. A new bacterial strain, Burkholderia sp. KCTC 11096BP gave maximum growth promotion and was selected for further investigations. The culture filtrate of this bacterium was thus analyzed for the presence of gibberellins and we found physiologically active gibberellins were found (GA1, 0.23 ng/100 ml; GA3, 5.11 ng/100 ml and GA4, 2.65 ng/100 ml) along with physiologically inactive GA9, GA12, GA15, GA20, and GA24. The bacterial isolate also solubilised tricalcium phosphate and lowered the pH of the medium during the process. The isolate was identified as a new strain of Burkholderia through phylogenetic analysis of 16S rDNA sequence. Gibberellin production capacity of genus Burkholderia is reported for the first time in current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Alla, M.H. 1994. Phosphates and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18, 294–296.

    Article  CAS  Google Scholar 

  • Adachi, M., Y. Sako, and Y. Ishida. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32, 424–432.

    Article  CAS  Google Scholar 

  • Amies, C.R. 1967. A modified formula for the preparation of Stuart’s transport medium. Can. J. Publ. Health 58, 296–300.

    CAS  Google Scholar 

  • Bastián, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Reg. 24, 7–11.

    Article  Google Scholar 

  • Bertrand, H., C. Plassard, X. Pinochet, B. Toraine, P. Normand, and J.C. Cleyet-Marel. 2000. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg, G.V. and B.J.J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Cassán, F., R. Bottini, G. Schneider, and P. Piccoli. 2001a. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol. 125, 2053–2058.

    Article  PubMed  Google Scholar 

  • Cassán, F., C. Lucangeli, R. Bottini, and P. Piccoli. 2001b. Azospirillum spp. Metabolize [17,17-2H2]Gibberellin A20 to [17,17-2H2] Gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol. 42, 763–767.

    Article  PubMed  Google Scholar 

  • Dobert, R.C., S.B. Rood, and D.G. Blevins. 1992. Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol. 98, 221–224.

    Article  CAS  PubMed  Google Scholar 

  • Franck, C., J. Lammertyn, and B. Nicolaï. 2005 Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears, In F. Mencarelli and P. Tonutti. Proceedings of 5th International Postharvest Symposium. Acta Hort. 682, 1991–1998.

  • Fulchieri, M., C. Lucangeli, and R. Bottini. 1993. Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol. 34, 1305–1309.

    CAS  Google Scholar 

  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Goldstein, A.H., R.D. Rogers, and G. Mead. 1993. Separating phosphate from ores via bioprocessing. Bioresour. Technol. 11, 1250–1254.

    CAS  Google Scholar 

  • Gutierrez-Manero, F.J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F.R. Tadeo, and M. Talon. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111, 206–211.

    Article  Google Scholar 

  • Hilda, R. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  Google Scholar 

  • Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24, 389–395.

    Article  Google Scholar 

  • Joo, G.J., Y.M. Kim, I.J. Lee, K.S. Song, and I.K. Rhee. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.Y., D. Jordan, and H.B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153, 273–277.

    CAS  Google Scholar 

  • Kpomblekou, A.K. and M.A. Tabatabai. 1994. Effect of organic acids on release of P from phosphate rocks. Soil Sci. 158, 442–443.

    Article  Google Scholar 

  • Lee, I.J., K.R. Foster, and P.W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116, 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  • MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20, 387–442.

    Article  Google Scholar 

  • Mitter, N., A. Srivastava, K. Renu, S. Ahamad, A. Sarbhoy, and D. Agarwal. 2002. Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia 153, 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Ecol. 170, 265–270.

    Article  CAS  Google Scholar 

  • Peix, A., A.A. Rivas-Boyero, P.F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2002. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33, 103–110.

    Article  Google Scholar 

  • Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ. 26, 189–199.

    Article  CAS  Google Scholar 

  • Piccoli, P., D. Lucangeli, G. Schneider, and R. Bottini. 1997. Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17,17-2H2]Gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul. 23, 179–182.

    Article  CAS  Google Scholar 

  • Piccoli, P., O. Masciarelli, and R. Bottini. 1996. Metabolism of 17,17 [2H2]-Gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21, 167–178.

    Google Scholar 

  • Sambrook, J. and D.W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Shekhar, N.C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182, 291–296.

    Article  Google Scholar 

  • Song, O.R., S.J. Lee, Y.S. Lee, S.C. Lee, K.K. Kim, and Y.L. Choi. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 39, 51–156.

    Article  Google Scholar 

  • Sudhakara, R.M., S. Kumar, K. Babita, and M.S. Reddy. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour. Technol. 84, 187–189.

    Article  Google Scholar 

  • Sundara, B., V. Natarajan, and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77, 43–49.

    Article  Google Scholar 

  • Yanni, Y.G., R.Y. Rizk, F.K. Abd El-Fattah, A. Squartini, V. Corich, A. Giacomini, F. de Bruijn, J. Rademaker, J. Maya-Flores, P. Ostrom, M. Vega-Hernández, R.I. Hollingsworth, E. Martínez-Molina, P. Mateos, E. Velázquez, J. Wopereis, E. Triplett, M. Umali-García, J.A. Anarna, B.G. Rolfe, J.K. Ladha, J. Hill, R. Mujoo, P.K. Ng, and F.B. Dazzo. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28, 845–870.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Additional information

These authors contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, GJ., Kang, SM., Hamayun, M. et al. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol. 47, 167–171 (2009). https://doi.org/10.1007/s12275-008-0273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0273-1

Keywords

Navigation