Skip to main content
Log in

Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 μA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Zhang, J.; Wu, Z.; Jia, Y. M.; Kan, J. W.; Cheng, G. M. Piezoelectric bimorph cantilever for vibration-producing-hydrogen. Sensors 2013, 13, 367–374.

    Article  PubMed Central  Google Scholar 

  4. Park, K. I.; Jeong, C. K.; Ryu, J.; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate titanate particles and carbon nanotubes. Adv. Eng. Mater., in press, DOI: 10.1002/aenm.201300458.

  5. Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.

    Google Scholar 

  6. Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 2004, 115, 523–529.

    Article  CAS  Google Scholar 

  7. Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.

    Article  ADS  Google Scholar 

  8. Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2011, 24, 279–284.

    Article  CAS  MATH  Google Scholar 

  9. Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82–87.

    Article  PubMed  ADS  Google Scholar 

  10. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  11. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3144.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  PubMed  CAS  ADS  Google Scholar 

  13. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  PubMed  CAS  ADS  Google Scholar 

  14. Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  PubMed  CAS  ADS  Google Scholar 

  17. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

    Article  CAS  ADS  Google Scholar 

  20. Castle, G. S. P. Industrial applications of electrostatics: The past, present and future. J. Electrost. 2001, 51-52, 1–7.

    Article  Google Scholar 

  21. Yang, X. H.; Zhu, G.; Wang, S. H.; Zhang, R.; Lin, L.; Wu, W. Z.; Wang, Z. L. A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 2012, 5, 9462–9466.

    Article  CAS  Google Scholar 

  22. Zhong, J. W.; Zhong, Q. Z.; Fan, F. R.; Zhang, Y.; Wang, S. H.; Hu, B.; Wang, Z. L.; Zhou, J. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2013, 4, 491–497.

    Article  Google Scholar 

  23. Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362–364.

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Sessler, G. M. Topics in Applied Physcs: Electrets; Spring-Verlag Berlin Heidelberg: New York, 1980.

    Google Scholar 

  25. Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid base interactions. Nature 1993, 366, 442–443.

    Article  CAS  ADS  Google Scholar 

  26. Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312.

    Article  PubMed  CAS  ADS  Google Scholar 

  27. Soh, S.; Kwok, S. W.; Liu, H.; Whitesides, G. M. Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 2012, 134, 20151–20159.

    Article  PubMed  CAS  Google Scholar 

  28. Hu, Y. F.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.

    Article  PubMed  CAS  ADS  Google Scholar 

  29. Cross, J. A. Electrostatics: Principles, problems and applications. In Adam Hilger: Bristol 1987, Chapter 2.

    Google Scholar 

  30. Németh, E.; Albrecht, V.; Schulert, G.; Simon, F. Polymer tribo-electric charging: Dependence on thermodynamic surface properties and relative humidity. J. Electrost. 2003, 58, 3–16.

    Article  Google Scholar 

  31. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

    Article  PubMed  CAS  ADS  Google Scholar 

  32. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotech. 2008, 4, 34–39.

    Article  ADS  Google Scholar 

  33. Graff, K. F. Wave Motion in Elestic Solids; Dover: New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglin Wang.

Additional information

Authors with equal contribution and authorship order determined by coin toss.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Chen, J., Zhu, G. et al. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 6, 880–886 (2013). https://doi.org/10.1007/s12274-013-0364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0364-0

Keywords

Navigation