Skip to main content
Log in

An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au- molecule-Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-1,4-dithiol (BDT) and 4,4′-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283.

    Article  CAS  Google Scholar 

  2. McCreery, R. L.; Bergren, A. J. Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication. Adv. Mater. 2009, 21, 4303–4322.

    Article  CAS  Google Scholar 

  3. Ulgut, B.; Abruna, H. D. Electron transfer through molecules and assemblies at electrode surfaces. Chem. Rev. 2008, 108, 2721–2736.

    Article  CAS  Google Scholar 

  4. Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Fabrication of sub-10 nm metallic lines of low line-width roughness by hydrogen reduction of patterned metal-organic materials. Adv. Funct. Mater. 2010, 20, 2317–2323.

    Article  CAS  Google Scholar 

  5. Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory. Phys. Rev. Lett. 2002, 89, 086802.

    Article  CAS  Google Scholar 

  6. Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 2003, 125, 15294–15295.

    Article  CAS  Google Scholar 

  7. Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

    Article  CAS  Google Scholar 

  8. Strachan, D. R.; Smith, D. E.; Johnston, D. E.; Park, T. H.; Therien, M. J.; Bonnell, D. A.; Johnson, A. T. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 2005, 86, 043109.

    Article  Google Scholar 

  9. Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

    Article  CAS  Google Scholar 

  10. Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. Charge transport in single Au|alkanedithiol|Au junctions: Coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 2008, 130, 318–326.

    Article  CAS  Google Scholar 

  11. Fujihira, M.; Suzuki, M.; Fujii, S.; Nishikawa, A. Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys. Chem. Chem. Phys. 2006, 8, 3876–3884.

    Article  CAS  Google Scholar 

  12. Jang, S. Y.; Reddy, P.; Majumdar, A.; Segalman, R. A. Interpretation of stochastic events in single molecule conductance measurements. Nano Lett. 2006, 6, 2362–2367.

    Article  CAS  Google Scholar 

  13. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

    Article  CAS  Google Scholar 

  14. Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 2008, 130, 13198–13199.

    Article  CAS  Google Scholar 

  15. Gonzalez, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schonenberger, C.; Calame, M. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 2006, 6, 2238–2242.

    Article  CAS  Google Scholar 

  16. Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Physica C 1992, 191, 485–504.

    Article  Google Scholar 

  17. Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.

    Article  Google Scholar 

  18. Li, J. Z.; Yamada, Y.; Murakoshi, K.; Nakato, Y. Sustainable metal nano-contacts showing quantized conductance prepared at a gap of thin metal wires in solution. Chem. Commun. 2001, 2170–2171.

  19. Li, C. Z.; Tao, N. J. Quantum transport in metallic nano- wires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 1998, 72, 894–896.

    Article  CAS  Google Scholar 

  20. Xiang, J.; Liu, B.; Wu, S. T.; Ren, B.; Yang, F. Z.; Mao, B. W.; Chow, Y. L.; Tian, Z. Q. A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew. Chem. Int. Edit. 2005, 44, 1265–1268.

    Article  CAS  Google Scholar 

  21. Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li, X.; Luo, Z. Z.; Lu, M.; Yang, F. Z., et al. Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact. Nanotechnology 2011, 22, 275313.

    Article  Google Scholar 

  22. Tian, J. H.; Yang, Y.; Liu, B.; Schollhorn, B.; Wu, D. Y.; Maisonhaute, E.; Muns, A. S.; Chen. Y.; Amatore. C.; Tao, N. J., et al. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology 2010, 21, 274012.

    Article  Google Scholar 

  23. Scheer, E.; Agraït, N.; Cuevas, J. C.; Yeyati, A. L.; Ludoph, B.; Martin-Rodero, A.; Bollinger, G. R.; van Ruitenbeek, J. M.; Urbina, C. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 1998, 394, 154–157.

    Article  CAS  Google Scholar 

  24. Tsutsui, M.; Shoji, K.; Taniguchi, M.; Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 2008, 8, 345–349.

    Article  CAS  Google Scholar 

  25. Ittah, N.; Yutsis, I.; Selzer, Y. Fabrication of highly stable configurable metal quantum point contacts. Nano Lett. 2008, 8, 3922–3927.

    Article  CAS  Google Scholar 

  26. Costa-Kramer, J. L.; Garcia, N.; Garcia-Mochales, P.; Serena, P. A. Nanowire formation in macroscopic metallic contacts: Quantum mechanical conductance tapping a table top. Surf. Sci. 1995, 342, L1144–L1149.

    Article  Google Scholar 

  27. Lin, L. L.; Wang, C. K.; Luo, Y. Inelastic electron tunneling spectroscopy of gold-benzenedithiol-gold junctions: Accurate determination of molecular conformation. ACS Nano 2011, 5, 2257–2263.

    Article  CAS  Google Scholar 

  28. Yeganeh, S.; Ratner, M. A.; Galperin, M.; Nitzan, A. Transport in state space: Voltage-dependent conductance calculations of benzene-1,4-dithiol. Nano Lett. 2009, 9, 1770–1774.

    Article  CAS  Google Scholar 

  29. Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Observation of molecular orbital gating. Nature 2009, 462, 1039–1043.

    Article  CAS  Google Scholar 

  30. Lortscher, E.; Weber. H. B.; Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 2007, 98, 176807.

    Article  Google Scholar 

  31. Ghosh, S.; Halimun, H.; Mahapatro, A. K.; Choi, J.; Lodha, S.; Janes, D. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 2005, 87, 233509.

    Article  Google Scholar 

  32. Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Measurement of single molecule conductance: Benzenedithiol and benzenedime-thanethiol. Nano Lett. 2004, 4, 267–271.

    Article  CAS  Google Scholar 

  33. Tsutsui, M.; Taniguchi, M.; Kawai, T. Atomistic mechanics and formation mechanism of metal-molecule-metal junctions. Nano Lett. 2009, 9, 2433–2439.

    Article  CAS  Google Scholar 

  34. Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: Possibilities and limitations. New J. Phys. 2008, 10, 065008.

    Article  Google Scholar 

  35. Ulrich, J.; Esrail, D.; Pontius, W.; Venkataraman, L.; Millar, D.; Doerrer, L. H. Variability of conductance in molecular junctions. J. Phys. Chem. B 2006, 110, 2462–2466.

    Article  CAS  Google Scholar 

  36. Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N.; Tian, Z. Q. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.

    Article  CAS  Google Scholar 

  37. Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.

    Article  CAS  Google Scholar 

  38. Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 2008, 3, 727–732.

    Article  CAS  Google Scholar 

  39. Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006, 6, 458–462.

    Article  CAS  Google Scholar 

  40. Hou, S.; Zhang, J.; Li, R.; Ning, J.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z.; Wu, Q. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 2005, 16, 239–244.

    Article  CAS  Google Scholar 

  41. Stadler, R.; Jacobsen, K. Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Phys. Rev. B 2006, 74, 161405.

    Article  Google Scholar 

  42. Li, Z.; Kosov, D. S. Dithiocarbamate anchoring in molecular wire junctions: A first principles study. J. Phys. Chem. B 2006, 110, 9893–9898.

    Article  CAS  Google Scholar 

  43. Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martín, S.; Nichols, R. J.; Higgins, S. J.; García-Suárez, V. C. M.; Lambert, C. J. Oligoyne Single Molecule Wires. J. Am. Chem. Soc. 2009, 131, 15647–15654.

    Article  CAS  Google Scholar 

  44. Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234.

    Article  CAS  Google Scholar 

  45. Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.; Xie, Z. X.; Jiang, Y. B.; Mao, B. W. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 2008, 112, 3935–3940.

    Article  CAS  Google Scholar 

  46. Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X., et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqun Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Chen, Z., Liu, J. et al. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 4, 1199–1207 (2011). https://doi.org/10.1007/s12274-011-0170-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0170-5

Keywords

Navigation