Skip to main content
Log in

Linear strain-gradient effect on the energy bandgap in bent CdS nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical-electronic properties in nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the Sub-10-nm regime. Science 2004, 306, 2057–2060.

    Article  Google Scholar 

  2. Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Grossman, J. C., et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 2009, 4, 732–737.

    Article  CAS  Google Scholar 

  3. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  4. He, J.; Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 2008, 8, 1798–1802.

    Article  CAS  Google Scholar 

  5. Zhang, Y. F.; Han, X. D.; Zheng, K.; Zhang, Z.; Zhang, X. N.; Fu, J. Y.; Ji, Y.; Hao, Y. J.; Guo, X. Y.; Wang, Z. L. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 2007, 17, 3435–3440.

    Article  CAS  Google Scholar 

  6. Han, X. B.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Xu, J.; Liao, Z. M.; Zhang, X. Z.; Shan, X. D., et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

    Article  CAS  Google Scholar 

  7. Trauernicht, D. P.; Mysyrowicz, A.; Wolfe, J. P. Strain confinement and thermodynamics of free excitons in a direct-gap semiconductor. Phys. Rev. Lett. 1983, 28, 3590–3592.

    CAS  Google Scholar 

  8. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

    Article  CAS  Google Scholar 

  9. Cross, L. E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 2006, 41, 53–63.

    Article  CAS  Google Scholar 

  10. Raffaele, R. Towards a bulk theory of flexoelectricity. Phys. Rev. Lett. 2010, 105, 127601.

    Article  Google Scholar 

  11. Ma, R. M.; Dai, L.; Qin, G. G. High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts. Nano Lett. 2007, 7, 868–873.

    Article  CAS  Google Scholar 

  12. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 630–632.

    Article  Google Scholar 

  13. Zhang, M.; Zhai, T. Y.; Wang, X.; Liao, Q.; Ma, Y.; Yao, J. N. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties. J. Solid State Chem. 2009, 182, 3188–3194.

    Article  CAS  Google Scholar 

  14. Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.

    Article  Google Scholar 

  15. Zhou, W. C.; Pan, A.; Li, Y.; Dai, G. Z.; Wan, Q.; Zhang, Q. L.; Zou, B. S. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 2008, 112, 9253–9260.

    Article  CAS  Google Scholar 

  16. Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.

    Article  CAS  Google Scholar 

  17. Niles, D. W.; Höchst, H. Strain-induced changes in the electronic valence-band structure of a cubic CdS(100) film. Phys. Rev. B 1991, 44, 10965–10968.

    Article  CAS  Google Scholar 

  18. Wu, P. C.; Ye, Y.; Sun, T.; Peng, R. M.; Wen, X. N.; Xu, W. J.; Liu, C.; Dai, L. Ultrahigh-performance inverters based on CdS nanobelts. ACS Nano 2009, 3, 3138–3142.

    Article  CAS  Google Scholar 

  19. Han, X. D.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.

    Article  CAS  Google Scholar 

  20. Titova, L. V.; Hoang, T. B.; Jackon, H. E.; Smith, L. M. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.

    Article  Google Scholar 

  21. Xu, J.; Chen, L.; Yu, L. S.; Liang, H.; Zhang, B. S.; Lau, K. M. Cathodoluminescence study of InGaN/GaN quantum-well LED structures grown on a Si substrate. J. Electron. Mater. 2007, 36, 1144–1147.

    Article  CAS  Google Scholar 

  22. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779.

    Article  CAS  Google Scholar 

  23. Bryant, F. J.; Radford, C. J. Electron radiation damage and the green edge emission of CdS. J. Phys. C: Solid State Phys. 1970, 3, 1264–1274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanlin Guo or Dapeng Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Q., Zhang, Z.Y., Kou, L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 4, 308–314 (2011). https://doi.org/10.1007/s12274-010-0085-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0085-6

Keywords

Navigation