Skip to main content
Log in

The osmotic stress response of split influenza vaccine particles in an acidic environment

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azizi, A., A. Kumar, F. Diaz-Mitoma, and J. Mestecky. 2010. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathogens 6: e1001147.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bullough, P.A., F.M. Hughson, J.J. Skehel, and D.C. Wiley. 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H.J., B.J. Bondy, D.G. Yoo, R.W. Compans, S.M. Kang, and M.R. Prausnitz. 2013a. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles. Journal of Controlled Release 166: 159–171.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, H.J., C.F. Ebersbacher, M.C. Kim, S.M. Kang, and C.D. Montemagno. 2013b. A mechanistic study on the destabilization of whole inactivated influenza virus vaccine in gastric environment. PLoS ONE 8: e66316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, H.J., C.F. Ebersbacher, N.V. Myung, and C.D. Montemagno. 2012a. Synthesis of nanoparticles with frog foam nest proteins. Journal of Nanoparticle Research 14: 1–13.

    Google Scholar 

  • Choi, H.J., C.F. Ebersbacher, F.S. Quan, and C.D. Montemagno. 2013c. pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors. Nanotechnology 24: 055603.

    Article  PubMed  Google Scholar 

  • Choi, H.J., D.G. Yoo, B.J. Bondy, F.S. Quan, R.W. Compans, S.M. Kang, and M.R. Prausnitz. 2012b. Stability of influenza vaccine coated onto microneedles. Biomaterials 33: 3756–3769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farag-Mahmod, F.I., P.R. Wyde, J.P. Rosborough, and H.R. Six. 1988. Immunogenicity and efficacy of orally administered inactivated influenza virus vaccine in mice. Vaccine 6: 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Fiore, A.E., T.M. Uyeki, K. Broder, L. Finelli, G.L. Euler, J.A. Singleton, J.K. Iskander, P.M. Wortley, D.K. Shay, J.S. Bresee, and N.J. Cox. 2010. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recommendations and Reports 59: 1–62.

    Google Scholar 

  • Giudice, E.L., and J.D. Campbell. 2006. Needle-free vaccine delivery. Advanced Drug Delivery Reviews 58: 68–89.

    Article  CAS  PubMed  Google Scholar 

  • Harper, S.A., K. Fukuda, T.M. Uyeki, N.J. Cox, and C.B. Bridges. 2004. Prevention and control of influenza: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recommendations and Reports 53: 1–40.

    Google Scholar 

  • Hirst, G.K. 1942. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. Journal of Experimental Medicine 75: 49–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt, J.N. 1959. Gastric emptying and secretion in man. Physiological Reviews 39: 491–533.

    CAS  PubMed  Google Scholar 

  • Lazzell, V., R.H. Waldman, C. Rose, R. Khakoo, A. Jacknowitz, and S. Howard. 1984. Immunization against influenza in humans using an oral enteric-coated killed virus-vaccine. Journal of Biological Standardization 12: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Le Maire, M., P. Champeil, and J.V. Moller. 2000. Interaction of membrane proteins and lipids with solubilizing detergents. Biochimica et Biophysica Acta 1508: 86–111.

    Article  PubMed  Google Scholar 

  • Lee, I.-S., H.J. Kim, D.H. Lee, G.B. Hwang, J.H. Jung, M. Lee, J. Lim, and B.U. Lee. 2011. Aerosol particle size distribution and genetic characteristics of aerosolized influenza A H1N1 virus vaccine particles. Aerosol Air Qual Res 11: 230–237.

    CAS  Google Scholar 

  • Luykx, D.M., M.G. Casteleijn, W. Jiskoot, J. Westdijk, and P.M. Jongen. 2004. Physicochemical studies on the stability of influenza haemagglutinin in vaccine bulk material. European Journal of Pharmaceutical Sciences 23: 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Mutsch, M., W. Zhou, P. Rhodes, M. Bopp, R.T. Chen, T. Linder, C. Spyr, and R. Steffen. 2004. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. New England Journal of Medicine 350: 896–903.

    Article  CAS  PubMed  Google Scholar 

  • Neutra, M.R., and P.A. Kozlowski. 2006. Mucosal vaccines: the promise and the challenge. Nature Reviews Immunology 6: 148–158.

    Article  CAS  PubMed  Google Scholar 

  • Ollivon, M., S. Lesieur, C. Grabielle-Madelmont, and M. Paternostre. 2000. Vesicle reconstitution from lipid-detergent mixed micelles. Biochimica et Biophysica Acta 1508: 34–50.

    Article  CAS  PubMed  Google Scholar 

  • Palese, P. 2006. Making better influenza virus vaccines? Emerging Infectious Diseases 12: 61–65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Quan, F.S., R.W. Compans, H.H. Nguyen, and S.M. Kang. 2008. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. Journal of Virology 82: 1350–1359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quan, F.S., Z.N. Li, M.C. Kim, D. Yang, R.W. Compans, D.A. Steinhauer, and S.M. Kang. 2011. Immunogenicity of low-pH treated whole viral influenza vaccine. Virology 417: 196–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skehel, J.J., P.M. Bayley, E.B. Brown, S.R. Martin, M.D. Waterfield, J.M. White, I.A. Wilson, and D.C. Wiley. 1982. Changes in the conformation of influenza-virus hemagglutinin at the pH optimum of virus-mediated membrane-fusion. Proceedings of the National Academy of Sciences USA 79: 968–972.

    Article  CAS  Google Scholar 

  • Staneková, Z., and E. Vareckova. 2010. Conserved epitopes of influenza A virus inducing protective immunity and their prospects for universal vaccine development. Virology Journal 7: 351.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun, S.T., A. Milon, T. Tanaka, G. Ourisson, and Y. Nakatani. 1986. Osmotic swelling of unilamellar vesicles by the stopped-flow light-scattering method-elastic properties of vesicles. Biochimica et Biophysica Acta 860: 525–530.

    Article  CAS  Google Scholar 

  • Szarka, L.A., and M. Camilleri. 2009. Methods for measurement of gastric motility. American Journal of Physiology Gastrointestinal and Liver Physiology 296: G461–G475.

    Article  CAS  PubMed  Google Scholar 

  • Teale, F.W., and G. Weber. 1957. Ultraviolet fluorescence of the aromatic amino acids. Biochemical Journal 65: 476–482.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson, W.W., D.K. Shay, E. Weintraub, L. Brammer, N. Cox, L.J. Anderson, and K. Fukuda. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289: 179–186.

    Article  PubMed  Google Scholar 

  • Wiley, D.C., and J.J. Skehel. 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56: 365–394.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted at the University of Alberta and the University of Cincinnati. Influenza vaccines used in this work were produced at the Georgia State University. This project was funded by a grant from the Bill & Melinda Gates Foundation through the Grand Challenges Exploration Initiative (C.D.M. and H.J.C.), and in part by NIH/NIAID grants AI093772 (S.M.K.), AI087782 (S.M.K.), and AI105170 (S.M.K). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyo-Jick Choi or Carlo D. Montemagno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HJ., Kim, MC., Kang, SM. et al. The osmotic stress response of split influenza vaccine particles in an acidic environment. Arch. Pharm. Res. 37, 1607–1616 (2014). https://doi.org/10.1007/s12272-013-0257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0257-5

Keywords

Navigation