Skip to main content
Log in

Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Visnagin, which is found in Ammi visnaga, has biological activity as a vasodilator and reduces blood pressure by inhibiting calcium influx into the cell. The present study demonstrates the anti-inflammatory effect of visnagin on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. When cells were treated with visnagin prior to LPS stimulation, production of nitric oxide and expression of iNOS were attenuated in a dose-dependent manner. Visnagin also caused a significant decrease of mRNA expression and release of TNF-α, IL-1β and IFNγ. In addition, visnagin reduced LPS-induced IL-6 and MCP-1 mRNA level. We further found that visnagin dose-dependently inhibited LPS-induced AP-1 and NF-κB luciferase activities. Taken together, our results for the first time suggest that the anti-inflammatory effect of visnagin might result from the inhibition of transcription factors, such as AP-1 and NF-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aquilano, K., Baldelli, S., Rotilio, G., and Ciriolo, M. R., Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res., 33, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Bae, E. A., Kim, E. J., Park, J. S., Kim, H. S., Ryu, J. H., and Kim, D. H., Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med., 72, 627–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jalil, E., De Oliveira, A. C., Graf, S., Bhatia, H. S., Hull, M., Munoz, E., and Fiebich, B. L., Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J. Neuroinflammation, 4, 25 (2007).

    Article  PubMed  Google Scholar 

  • Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., Lee, S. T., Wen Tung, W., and Lin, W. W., Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factorkappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur. J. Pharmacol., 521, 9–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chu, S. C., Marks-Konczalik, J., Wu, H. P., Banks, T. C., and Moss, J., Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem. Biophys. Res. Commun., 248, 871–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  • De Simone, R., Levi, G., and Aloisi, F., Interferon gamma gene expression in rat central nervous system glial cells. Cytokine, 10, 418–422 (1998).

    Article  PubMed  Google Scholar 

  • Duarte, J., Perez-Vizcaino, F., Torres, A. I., Zarzuelo, A., Jimenez, J., and Tamargo, J., Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol., 286, 115–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Duarte, J., Torres, A. I., and Zarzuelo, A., Cardiovascular effects of visnagin on rats. Planta Med., 66, 35–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Faggioli, L., Costanzo, C., Donadelli, M., and Palmieri, M., Activation of the Interleukin-6 promoter by a dominant negative mutant of c-Jun. Biochim. Biophys. Acta, 1692, 17–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Graeber, M. B. and Streit, W. J., Microglia: biology and pathology. Acta Neuropathol., 119, 89–105 (2010).

    Article  PubMed  Google Scholar 

  • Jang, S., Kelley, K. W., and Johnson, R. W., Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl. Acad. Sci. U.S.A., 105, 7534–7539 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Jung, J. S., Yan, J. J., and Song, D. K., Protective effect of decursinol on mouse models of sepsis: enhancement of interleukin-10. Korean J. Physiol. Pharmacol., 12, 79–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kao, T. K., Ou, Y. C., Raung, S. L., Lai, C. Y., Liao, S. L., and Chen, C. J., Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci., 86, 315–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kaul, B. and Staba, E. J., Visnagin: biosynthesis and isolation from Ammi visnagi suspension cultures. Science, 150, 1731–1732 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Kawanokuchi, J., Mizuno, T., Takeuchi, H., Kato, H., Wang, J., Mitsuma, N., and Suzumura, A., Production of interferon-gamma by microglia. Mult. Scler., 12, 558–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. J., Lee, S. S., Chen, S. C., Ho, F. M., and Lin, W. W., Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia. Br. J. Pharmacol., 146, 378–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lu, D. Y., Tang, C. H., Chen, Y. H., and Wei, I. H., Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J. Cell. Biochem., 110, 697–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Park, S. H., Kang, J. S., Yoon, Y. D., Lee, K., Kim, K. J., Lee, K. H., Lee, C. W., Moon, E. Y., Han, S. B., Kim, B. H., Kim, H. M., and Park, S. K., Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-kappaB and AP-1. Phytother. Res., 24Suppl 1, S29–S34 (2010).

    Article  PubMed  Google Scholar 

  • Perez, R. L., Ritzenthaler, J. D., and Roman, J., Transcriptional regulation of the interleukin-1beta promoter via fibrinogen engagement of the CD18 integrin receptor. Am. J. Respir. Cell Mol. Biol., 20, 1059–1066 (1999).

    CAS  PubMed  Google Scholar 

  • Rauwald, H. W., Brehm, O., and Odenthal, K. P., The involvement of a Ca2+ channel blocking mode of action in the pharmacology of Ammi visnaga fruits. Planta Med., 60, 101–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Ray, B. and Lahiri, D. K., Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol., 9, 434–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Saraiva, M. and O’garra, A., The regulation of IL-10 production by immune cells. Nat. Rev. Immunol., 10, 170–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Saud, K., Herrera-Molina, R., and Von Bernhardi, R., Proand anti-inflammatory cytokines regulate the ERK pathway: implication of the timing for the activation of microglial cells. Neurotox. Res., 8, 277–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., Dantzer, R., and Kelley, K. W., Interleukin-10 in the brain. Crit. Rev. Immunol., 21, 427–449 (2001).

    CAS  PubMed  Google Scholar 

  • Thompson, W. L., Karpus, W. J., and Van Eldik, L. J., MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J. Neuroinflammation, 5, 35 (2008).

    Article  PubMed  Google Scholar 

  • Tuttolomondo, A., Di Raimondo, D., Di Sciacca, R., Pinto, A., and Licata, G., Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des., 14, 3574–3589 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S. F., Hsiao, H. Y., and Mak, O. T., Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr. Drug Targets Inflamm. Allergy, 4, 335–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ubeda, A., Tejerina, T., Tamargo, J., and Villar, A., Effects of khellin on contractile responses and 45Ca2+ movements in rat isolated aorta. J. Pharm. Pharmacol., 43, 46–48 (1991).

    CAS  PubMed  Google Scholar 

  • Udalova, I. A. and Kwiatkowski, D., Interaction of AP-1 with a cluster of NF-kappa B binding elements in the human TNF promoter region. Biochem. Biophys. Res. Commun., 289, 25–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vanachayangkul, P., Byer, K., Khan, S., and Butterweck, V., An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine, 17, 653–658 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Barke, R. A., Charboneau, R., Loh, H. H., and Roy, S., Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J. Biol. Chem., 278, 37622–37631 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Du, L., Tang, X., Jung, S. Y., Zheng, B., Soh, B. Y., Kim, S. Y., Gu, Q., and Park, H., Brevicompanine E reduces lipopolysaccharide-induced production of proinflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factorkappaB. J. Neuroimmunol., 216, 32–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Liu, J., and Shi, J. S., Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur. J. Pharmacol., 636, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Won Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JK., Jung, JS., Park, SH. et al. Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Arch. Pharm. Res. 33, 1843–1850 (2010). https://doi.org/10.1007/s12272-010-1117-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1117-1

Key words

Navigation