Skip to main content

Advertisement

Log in

Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Treatment of cardiovascular diseases relies on the ability not only to abrogate and compensate for congenital deformities but also to repair cardiac pathologies in the adult. Determining how cells communicate within the myocardium and how to use this communication to repair and treat pathological conditions have been necessary steps in the successful intervention of cardiac diseases. In this regard, research has mostly focused on relationships between the main cellular constituents of the heart, myocytes, and fibroblasts. However, the coronary vasculature is also critical to myocardial organization and integrity, and how the vasculature influences and responds to cues from cardiac myocytes and fibroblasts is largely underappreciated. This review discusses how factors that affect myocyte and fibroblast physiology and communication may also interact with the coronary vasculature. Defining the mechanisms of these cellular relationships will help identify ways to control angiogenesis during cardiac remodeling and the development of tissue-engineered therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Waters, S. L., Alastruey, J., Beard, D. A., Bovendeerd, P. H., Davies, P. F., Jayaraman, G., Jensen, O. E., Lee, J., Parker, K. H., Popel, A. S., Secomb, T. W., Siebes, M., Sherwin, S. J., Shipley, R. J., Smith, N. P., & van de Vosse, F. N. (2011). Theoretical models for coronary vascular biomechanics: Progress & challenges. Progress in Biophysics and Molecular Biology, 104(1–3), 49–76. doi:10.1016/j.pbiomolbio.2010.10.001.

    Article  PubMed  Google Scholar 

  2. Davies, P. F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature Clinical Practice. Cardiovascular Medicine, 6(1), 16–26. doi:10.1038/ncpcardio1397.

    Article  PubMed  CAS  Google Scholar 

  3. Ting, L. H., Jahn, J. R., Jung, J. I., Shuman, B. R., Feghhi, S., Han, S. J., Rodriguez, M. L., & Sniadecki, N. J. (2012). Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. American Journal of Physiology-Heart and Circulatory Physiology, 302(11), H2220–H2229. doi:10.1152/ajpheart.00975.2011.

    Article  PubMed  CAS  Google Scholar 

  4. Takeda, N., & Manabe, I. (2011). Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. International Journal Inflammation, 2011, 535241. doi:10.4061/2011/535241.

    Google Scholar 

  5. Tian, Y., & Morrisey, E. E. (2012). Importance of myocyte–nonmyocyte interactions in cardiac development and disease. Circulation Research, 110(7), 1023–1034. doi:10.1161/CIRCRESAHA.111.243899.

    Article  PubMed  CAS  Google Scholar 

  6. Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–253.

    Article  PubMed  CAS  Google Scholar 

  7. Kohl, P., & Camelliti, P. (2011). Fibroblast–myocyte connections in the heart. Heart Rhythm. doi:10.1016/j.hrthm.2011.10.002.

  8. Rohr, S. (2012). Arrhythmogenic implications of fibroblast–myocyte interactions. Circulation. Arrhythmia and Electrophysiology, 5(2), 442–452. doi:10.1161/CIRCEP.110.957647.

    Article  PubMed  Google Scholar 

  9. Sussman, M. A., McCulloch, A., & Borg, T. K. (2002). Dance band on the Titanic: Biomechanical signaling in cardiac hypertrophy. Circulation Research, 91(10), 888–898.

    Article  PubMed  CAS  Google Scholar 

  10. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65(1), 40–51. doi:10.1016/j.cardiores.2004.08.020.

    Article  PubMed  CAS  Google Scholar 

  11. Young, A. A., Legrice, I. J., Young, M. A., & Smaill, B. H. (1998). Extended confocal microscopy of myocardial laminae and collagen network. Journal of Microscopy, 192(Pt 2), 139–150.

    Article  PubMed  CAS  Google Scholar 

  12. Bowers, S. L., Borg, T. K., & Baudino, T. A. (2010). The dynamics of fibroblast–myocyte–capillary interactions in the heart. Annals of the New York Academy of Sciences, 1188, 143–152. doi:10.1111/j.1749-6632.2009.05094.x.

    Article  PubMed  Google Scholar 

  13. Liu, H., Chen, B., & Lilly, B. (2008). Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis, 11(3), 223–234.

    Article  PubMed  CAS  Google Scholar 

  14. Burlew, B. S., & Weber, K. T. (2002). Cardiac fibrosis as a cause of diastolic dysfunction. Herz, 27(2), 92–98.

    Article  PubMed  Google Scholar 

  15. Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy. Circulation Research, 91(12), 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  16. Borg, T. K., & Caulfield, J. B. (1981). The collagen matrix of the heart. Federation Proceedings, 40(7), 2037–2041.

    PubMed  CAS  Google Scholar 

  17. Weber, K. T., Brilla, C. G., Campbell, S. E., Zhou, G., Matsubara, L., & Guarda, E. (1992). Pathologic hypertrophy with fibrosis: The structural basis for myocardial failure. Blood Pressure, 1(2), 75–85.

    Article  PubMed  CAS  Google Scholar 

  18. Weber, K. T., Sun, Y., & Diez, J. (2008). Fibrosis: A living tissue and the infarcted heart. Journal of the American College of Cardiology, 52(24), 2029–2031.

    Article  PubMed  Google Scholar 

  19. Sabbah, H. N., Sharov, V. G., Lesch, M., & Goldstein, S. (1995). Progression of heart failure: A role for interstitial fibrosis. Molecular and Cellular Biochemistry, 147(1–2), 29–34.

    Article  PubMed  CAS  Google Scholar 

  20. Cleutjens, J. P., Blankesteijn, W. M., Daemen, M. J., & Smits, J. F. (1999). The infarcted myocardium: Simply dead tissue, or a lively target for therapeutic interventions. Cardiovascular Research, 44(2), 232–241.

    Article  PubMed  CAS  Google Scholar 

  21. Xiao, J., Jiang, H., Zhang, R., Fan, G., Zhang, Y., Jiang, D., & Li, H. (2012). Augmented cardiac hypertrophy in response to pressure overload in mice lacking ELTD1. PLoS One, 7(5), e35779. doi:10.1371/journal.pone.0035779PONE-D-11-25153.

    Article  PubMed  CAS  Google Scholar 

  22. Souders CA, T.K. B, I. B, T.A. B (2012) Pressure overload induces early morphological changes in the heart. American Journal of Pathology In Press

  23. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: Friend or foe? American Journal of Physiology - Heart and Circulatory Physiology, 291(3), H1015–H1026. doi:10.1152/ajpheart.00023.2006.

    Article  PubMed  CAS  Google Scholar 

  24. Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428. doi:10.1161/01.RES.0000089258.40661.0C01.RES.0000089258.40661.0C.

    Article  PubMed  CAS  Google Scholar 

  25. Brutsaert, D. L. (2003). Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews, 83(1), 59–115. doi:10.1152/physrev.00017.2002.

    PubMed  CAS  Google Scholar 

  26. Kakkar, R., & Lee, R. T. (2010). Intramyocardial fibroblast myocyte communication. Circulation Research, 106(1), 47–57. doi:10.1161/CIRCRESAHA.109.207456.

    Article  PubMed  CAS  Google Scholar 

  27. Ottaviano, F. G., & Yee, K. O. (2011). Communication signals between cardiac fibroblasts and cardiac myocytes. Journal of Cardiovascular Pharmacology, 57(5), 513–521. doi:10.1097/FJC.0b013e31821209ee.

    Article  PubMed  CAS  Google Scholar 

  28. Graham, H. K., Horn, M., & Trafford, A. W. (2008). Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiologica (Oxford, England), 194(1), 3–21.

    Article  CAS  Google Scholar 

  29. Saffitz, J. E., Hames, K. Y., & Kanno, S. (2007). Remodeling of gap junctions in ischemic and nonischemic forms of heart disease. Journal of Membrane Biology, 218(1–3), 65–71. doi:10.1007/s00232-007-9031-2.

    PubMed  CAS  Google Scholar 

  30. Zamilpa, R., & Lindsey, M. L. (2010). Extracellular matrix turnover and signaling during cardiac remodeling following MI: Causes and consequences. Journal of Molecular and Cellular Cardiology, 48(3), 558–563. doi:10.1016/j.yjmcc.2009.06.012.

    Article  PubMed  CAS  Google Scholar 

  31. Esper, R. J., Nordaby, R. A., Vilarino, J. O., Paragano, A., Cacharron, J. L., & Machado, R. A. (2006). Endothelial dysfunction: A comprehensive appraisal. Cardiovascular Diabetology, 5, 4. doi:10.1186/1475-2840-5-4.

    Article  PubMed  CAS  Google Scholar 

  32. Pinsky, D. J., Patton, S., Mesaros, S., Brovkovych, V., Kubaszewski, E., Grunfeld, S., & Malinski, T. (1997). Mechanical transduction of nitric oxide synthesis in the beating heart. Circulation Research, 81(3), 372–379.

    Article  PubMed  CAS  Google Scholar 

  33. Kai, H., Mori, T., Tokuda, K., Takayama, N., Tahara, N., Takemiya, K., Kudo, H., Sugi, Y., Fukui, D., Yasukawa, H., Kuwahara, F., & Imaizumi, T. (2006). Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertension Research, 29(9), 711–718. doi:10.1291/hypres.29.711.

    Article  PubMed  CAS  Google Scholar 

  34. Seddon, M., Shah, A. M., & Casadei, B. (2007). Cardiomyocytes as effectors of nitric oxide signalling. Cardiovascular Research, 75(2), 315–326. doi:10.1016/j.cardiores.2007.04.031.

    Article  PubMed  CAS  Google Scholar 

  35. Harrison, D. G., Widder, J., Grumbach, I., Chen, W., Weber, M., & Searles, C. (2006). Endothelial mechanotransduction, nitric oxide and vascular inflammation. Journal of Internal Medicine, 259(4), 351–363. doi:10.1111/j.1365-2796.2006.01621.x.

    Article  PubMed  CAS  Google Scholar 

  36. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95. doi:10.1152/physrev.00018.2001.

    PubMed  CAS  Google Scholar 

  37. Touyz, R. M. (2004). Reactive oxygen species and angiotensin II signaling in vascular cells—Implications in cardiovascular disease. Brazilian Journal of Medical and Biological Research, 37(8), 1263–1273.

    Article  PubMed  CAS  Google Scholar 

  38. Touyz, R. M., & Briones, A. M. (2011). Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertension Research, 34(1), 5–14. doi:10.1038/hr.2010.201.

    Article  PubMed  CAS  Google Scholar 

  39. Pan, H., Xu, X., Hao, X., & Chen, Y. (2012). Changes of myogenic reactive oxygen species and interleukin-6 in contracting skeletal muscle cells. Oxidative Medicine and Cellular Longevity, 2012, 145418. doi:10.1155/2012/145418.

    Article  PubMed  CAS  Google Scholar 

  40. Banerjee I, Fuseler, JW, Souders CA, Bowers SLK, Baudino TA (2009) The role of interleukin-6 in the formation of the coronary vasculature. Microscopy and Microanalysis In Press

  41. Banerjee, I., Fuseler, J. W., Intwala, A. R., & Baudino, T. A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. American Journal of Physiology - Heart and Circulatory Physiology, 296(5), H1694–H1704. doi:10.1152/ajpheart.00908.2008.

    Article  PubMed  CAS  Google Scholar 

  42. Goldsmith, E. C., & Borg, T. K. (2002). The dynamic interaction of the extracellular matrix in cardiac remodeling. Journal of Cardiac Failure, 8(6 Suppl), S314–S318.

    Article  PubMed  CAS  Google Scholar 

  43. Sacharidou, A., Stratman, A. N., & Davis, G. E. (2012). Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells, Tissues, Organs, 195(1–2), 122–143. doi:10.1159/000331410.

    Article  PubMed  CAS  Google Scholar 

  44. Stratman, A. N., & Davis, G. E. (2012). Endothelial cell–pericyte interactions stimulate basement membrane matrix assembly: Influence on vascular tube remodeling, maturation, and stabilization. Microscopy and Microanalysis, 18(1), 68–80. doi:10.1017/S1431927611012402.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, H., Kennard, S., & Lilly, B. (2009). NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circulation Research, 104(4), 466–475. doi:10.1161/CIRCRESAHA.108.184846.

    Article  PubMed  CAS  Google Scholar 

  46. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J., & Davis, G. E. (2009). Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood, 114(24), 5091–5101. doi:10.1182/blood-2009-05-222364.

    Article  PubMed  CAS  Google Scholar 

  47. Tomanek, R. J., Hansen, H. K., & Christensen, L. P. (2008). Temporally expressed PDGF and FGF-2 regulate embryonic coronary artery formation and growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(7), 1237–1243. doi:10.1161/ATVBAHA.108.166454.

    Article  PubMed  CAS  Google Scholar 

  48. Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97(5), 343–347. doi:10.1007/s00395-002-0365-8.

    Article  PubMed  Google Scholar 

  49. Gray, M. O., Long, C. S., Kalinyak, J. E., Li, H. T., & Karliner, J. S. (1998). Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovascular Research, 40(2), 352–363.

    Article  PubMed  CAS  Google Scholar 

  50. Adiarto, S., Heiden, S., Vignon-Zellweger, N., Nakayama, K., Yagi, K., Yanagisawa, M., & Emoto, N. (2012). ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sciences. doi:10.1016/j.lfs.2012.02.006.

  51. Harada, M., Itoh, H., Nakagawa, O., Ogawa, Y., Miyamoto, Y., Kuwahara, K., Ogawa, E., Igaki, T., Yamashita, J., Masuda, I., Yoshimasa, T., Tanaka, I., Saito, Y., & Nakao, K. (1997). Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: Evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation, 96(10), 3737–3744.

    Article  PubMed  CAS  Google Scholar 

  52. Widyantoro, B., Emoto, N., Nakayama, K., Anggrahini, D. W., Adiarto, S., Iwasa, N., Yagi, K., Miyagawa, K., Rikitake, Y., Suzuki, T., Kisanuki, Y. Y., Yanagisawa, M., & Hirata, K. (2010). Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation, 121(22), 2407–2418. doi:10.1161/CIRCULATIONAHA.110.938217.

    Article  PubMed  CAS  Google Scholar 

  53. Kukreja, R. C., Yin, C., & Salloum, F. N. (2011). MicroRNAs: New players in cardiac injury and protection. Molecular Pharmacology, 80(4), 558–564. doi:10.1124/mol.111.073528.

    Article  PubMed  CAS  Google Scholar 

  54. Sun, H., & Wang, Y. (2011). Restriction of big hearts by a small RNA. Circulation Research, 108(3), 274–276. doi:10.1161/CIRCRESAHA.110.239426.

    Article  PubMed  CAS  Google Scholar 

  55. Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582. doi:10.1093/cvr/cvr344.

    Article  PubMed  CAS  Google Scholar 

  56. van Rooij, E., & Olson, E. N. (2007). microRNAs put their signatures on the heart. Physiological Genomics, 31(3), 365–366. doi:10.1152/physiolgenomics.00206.2007.

    Article  PubMed  CAS  Google Scholar 

  57. van Rooij, E., & Olson, E. N. (2007). MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. The Journal of Clinical Investigation, 117(9), 2369–2376. doi:10.1172/JCI33099.

    Article  PubMed  CAS  Google Scholar 

  58. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., & Engelhardt, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984. doi:10.1038/nature07511.

    Article  PubMed  CAS  Google Scholar 

  59. Cheng, Y., Zhu, P., Yang, J., Liu, X., Dong, S., Wang, X., Chun, B., Zhuang, J., & Zhang, C. (2010). Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovascular Research, 87(3), 431–439. doi:10.1093/cvr/cvq082.

    Article  PubMed  CAS  Google Scholar 

  60. Fleissner, F., Jazbutyte, V., Fiedler, J., Gupta, S. K., Yin, X., Xu, Q., Galuppo, P., Kneitz, S., Mayr, M., Ertl, G., Bauersachs, J., & Thum, T. (2010). Short communication: Asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circulation Research, 107(1), 138–143. doi:10.1161/CIRCRESAHA.110.216770.

    Article  PubMed  CAS  Google Scholar 

  61. Sabatel, C., Cornet, A. M., Tabruyn, S. P., Malvaux, L., Castermans, K., Martial, J. A., & Struman, I. (2010). Sprouty1, a new target of the angiostatic agent 16 K prolactin, negatively regulates angiogenesis. Molecular Cancer, 9, 231. doi:10.1186/1476-4598-9-231.

    Article  PubMed  CAS  Google Scholar 

  62. Caporali, A., & Emanueli, C. (2012). MicroRNAs in postischemic vascular repair. Cardiology Research and Practice, 2012, 486702. doi:10.1155/2012/486702.

    Article  PubMed  Google Scholar 

  63. Fish, J. E., & Srivastava, D. (2009). MicroRNAs: Opening a new vein in angiogenesis research. Science Signaling, 2(52), pe1. doi:10.1126/scisignal.252pe1.

    Article  PubMed  CAS  Google Scholar 

  64. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., Ivey, K. N., Bruneau, B. G., Stainier, D. Y., & Srivastava, D. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15(2), 272–284. doi:10.1016/j.devcel.2008.07.008.

    Article  PubMed  CAS  Google Scholar 

  65. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., Ohtani, K., Chavakis, E., Potente, M., Tjwa, M., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713. doi:10.1126/science.1174381.

    Article  PubMed  CAS  Google Scholar 

  66. Wang, S., & Olson, E. N. (2009). AngiomiRs—Key regulators of angiogenesis. Current Opinion in Genetics and Development, 19(3), 205–211. doi:10.1016/j.gde.2009.04.002.

    Article  PubMed  CAS  Google Scholar 

  67. Fish, J. E. (2012). A primer on the role of microRNAs in endothelial biology and vascular disease. Seminars in Nephrology, 32(2), 167–175. doi:10.1016/j.semnephrol.2012.02.003.

    Article  PubMed  CAS  Google Scholar 

  68. Das, S., Ferlito, M., Kent, O. A., Fox-Talbot, K., Wang, R., Liu, D., Raghavachari, N., Yang, Y., Wheelan, S. J., Murphy, E., & Steenbergen, C. (2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circulation Research, 110(12), 1596–1603. doi:10.1161/CIRCRESAHA.112.267732.

    Article  PubMed  CAS  Google Scholar 

  69. McCurley, A., & Jaffe, I. Z. (2012). Mineralocorticoid receptors in vascular function and disease. Molecular and Cellular Endocrinology, 350(2), 256–265. doi:10.1016/j.mce.2011.06.014.

    Article  PubMed  CAS  Google Scholar 

  70. Dagenais, G. R., Yusuf, S., Bourassa, M. G., Yi, Q., Bosch, J., Lonn, E. M., Kouz, S., & Grover, J. (2001). Effects of ramipril on coronary events in high-risk persons: Results of the heart outcomes prevention evaluation study. Circulation, 104(5), 522–526.

    Article  PubMed  CAS  Google Scholar 

  71. Dahlof, B., Devereux, R. B., Kjeldsen, S. E., Julius, S., Beevers, G., de Faire, U., Fyhrquist, F., Ibsen, H., Kristiansson, K., Lederballe-Pedersen, O., Lindholm, L. H., Nieminen, M. S., Omvik, P., Oparil, S., & Wedel, H. (2002). Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet, 359(9311), 995–1003. doi:10.1016/S0140-6736(02)08089-3.

    Article  PubMed  CAS  Google Scholar 

  72. Zanchetti, A., Hansson, L., Dahlof, B., Elmfeldt, D., Kjeldsen, S., Kolloch, R., Larochelle, P., McInnes, G. T., Mallion, J. M., Ruilope, L., & Wedel, H. (2001). Effects of individual risk factors on the incidence of cardiovascular events in the treated hypertensive patients of the Hypertension Optimal Treatment Study. HOT Study Group. Journal of Hypertension, 19(6), 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  73. Zannad, F., McMurray, J. J., Krum, H., van Veldhuisen, D. J., Swedberg, K., Shi, H., Vincent, J., Pocock, S. J., & Pitt, B. (2011). Eplerenone in patients with systolic heart failure and mild symptoms. The New England Journal of Medicine, 364(1), 11–21. doi:10.1056/NEJMoa1009492.

    Article  PubMed  CAS  Google Scholar 

  74. Lonn, E., Yusuf, S., Dzavik, V., Doris, C., Yi, Q., Smith, S., Moore-Cox, A., Bosch, J., Riley, W., & Teo, K. (2001). Effects of ramipril and vitamin E on atherosclerosis: The study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation, 103(7), 919–925.

    Article  PubMed  CAS  Google Scholar 

  75. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G., Angermann, C. E., & Stork, S. (2007). Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation, 115(13), 1754–1761. doi:10.1161/CIRCULATIONAHA.106.653964.

    Article  PubMed  CAS  Google Scholar 

  76. Mizuno, Y., Yoshimura, M., Yasue, H., Sakamoto, T., Ogawa, H., Kugiyama, K., Harada, E., Nakayama, M., Nakamura, S., Ito, T., Shimasaki, Y., Saito, Y., & Nakao, K. (2001). Aldosterone production is activated in failing ventricle in humans. Circulation, 103(1), 72–77.

    Article  PubMed  CAS  Google Scholar 

  77. Fraccarollo, D., Berger, S., Galuppo, P., Kneitz, S., Hein, L., Schutz, G., Frantz, S., Ertl, G., & Bauersachs, J. (2011). Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation, 123(4), 400–408. doi:10.1161/CIRCULATIONAHA.110.983023.

    Article  PubMed  CAS  Google Scholar 

  78. Lother, A., Berger, S., Gilsbach, R., Rosner, S., Ecke, A., Barreto, F., Bauersachs, J., Schutz, G., & Hein, L. (2011). Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension, 57(4), 746–754. doi:10.1161/HYPERTENSIONAHA.110.163287.

    Article  PubMed  CAS  Google Scholar 

  79. Bienvenu, L. A., Morgan, J., Rickard, A. J., Tesch, G. H., Cranston, G. A., Fletcher, E. K., Delbridge, L. M., & Young, M. J. (2012). Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology, 153(7), 3416–3425. doi:10.1210/en.2011-2098.

    Article  PubMed  CAS  Google Scholar 

  80. Cox, M. J., Sood, H. S., Hunt, M. J., Chandler, D., Henegar, J. R., Aru, G. M., & Tyagi, S. C. (2002). Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. American Journal of Physiology-Heart and Circulatory Physiology, 282(4), H1197–H1205. doi:10.1152/ajpheart.00483.2001.

    PubMed  CAS  Google Scholar 

  81. Givvimani, S., Qipshidze, N., Tyagi, N., Mishra, P. K., Sen, U., & Tyagi, S. C. (2011). Synergism between arrhythmia and hyperhomocysteinemia in structural heart disease. International Journal of Physiology Pathophysiology Pharmacology, 3(2), 107–119.

    CAS  Google Scholar 

  82. Hunt, M. J., Aru, G. M., Hayden, M. R., Moore, C. K., Hoit, B. D., & Tyagi, S. C. (2002). Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283(2), L239–L245. doi:10.1152/ajplung.00001.2002.

    PubMed  CAS  Google Scholar 

  83. Moshal, K. S., Kumar, M., Tyagi, N., Mishra, P. K., Metreveli, N., Rodriguez, W. E., & Tyagi, S. C. (2009). Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology-Heart and Circulatory Physiology, 296(3), H887–H892. doi:10.1152/ajpheart.00750.2008.

    Article  PubMed  CAS  Google Scholar 

  84. Ovechkin, A. V., Tyagi, N., Rodriguez, W. E., Hayden, M. R., Moshal, K. S., & Tyagi, S. C. (2005). Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. Journal of Applied Physiology, 99(6), 2398–2405. doi:10.1152/japplphysiol.00442.2005.

    Article  PubMed  CAS  Google Scholar 

  85. Narmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D., & Lee, R. T. (2004). Endothelial cells promote cardiac myocyte survival and spatial reorganization: Implications for cardiac regeneration. Circulation, 110(8), 962–968. doi:10.1161/01.CIR.0000140667.37070.0701.CIR.0000140667.37070.07.

    Article  PubMed  Google Scholar 

  86. Christalla, P., Hudson, J. E., & Zimmermann, W. H. (2012). The cardiogenic niche as a fundamental building block of engineered myocardium. Cells, Tissues, Organs, 195(1–2), 82–93. doi:10.1159/000331407.

    Article  PubMed  CAS  Google Scholar 

  87. Schaaf, S., Shibamiya, A., Mewe, M., Eder, A., Stohr, A., Hirt, M. N., Rau, T., Zimmermann, W. H., Conradi, L., Eschenhagen, T., & Hansen, A. (2011). Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One, 6(10), e26397. doi:10.1371/journal.pone.0026397PONE-D-11-08333.

    Article  PubMed  CAS  Google Scholar 

  88. Seif-Naraghi, S. B., Salvatore, M. A., Schup-Magoffin, P. J., Hu, D. P., & Christman, K. L. (2010). Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering. Part A, 16(6), 2017–2027. doi:10.1089/ten.TEA.2009.0768.

    Article  PubMed  CAS  Google Scholar 

  89. Yamada, Y., Yokoyama, S., Fukuda, N., Kidoya, H., Huang, X. Y., Naitoh, H., Satoh, N., & Takakura, N. (2007). A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochemical and Biophysical Research Communications, 353(1), 182–188. doi:10.1016/j.bbrc.2006.12.017.

    Article  PubMed  CAS  Google Scholar 

  90. Zimmermann, W. H. (2009). Remuscularizing failing hearts with tissue engineered myocardium. Antioxidants & Redox Signaling, 11(8), 2011–2023. doi:10.1089/ARS.2009.2467.

    Article  CAS  Google Scholar 

  91. He, W., Ye, L., Li, S., Liu, H., Wu, B., Wang, Q., Fu, X., Han, W., & Chen, Z. (2012). Construction of vascularized cardiac tissue from genetically modified mouse embryonic stem cells. The Journal of Heart and Lung Transplantation, 31(2), 204–212. doi:10.1016/j.healun.2011.11.010.

    Article  PubMed  Google Scholar 

  92. Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., Eschenhagen, T., & Zimmermann, W. H. (2006). Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation, 114(1 Suppl), I72–I78. doi:10.1161/CIRCULATIONAHA.105.001560.

    PubMed  Google Scholar 

  93. Stevens, K. R., Kreutziger, K. L., Dupras, S. K., Korte, F. S., Regnier, M., Muskheli, V., Nourse, M. B., Bendixen, K., Reinecke, H., & Murry, C. E. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Science U S A, 106(39), 16568–16573. doi:10.1073/pnas.0908381106.

    Article  CAS  Google Scholar 

  94. Koffler, J., Kaufman-Francis, K., Shandalov, Y., Egozi, D., Pavlov, D. A., Landesberg, A., & Levenberg, S. (2011). Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proceedings of the National Academy of Science U S A, 108(36), 14789–14794. doi:10.1073/pnas.1017825108.

    Article  CAS  Google Scholar 

  95. Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American Journal of Physiology - Heart and Circulatory Physiology, 293(3), H1883–H1891. doi:10.1152/ajpheart.00514.2007.

    Article  PubMed  CAS  Google Scholar 

  96. Shiojima, I., Sato, K., Izumiya, Y., Schiekofer, S., Ito, M., Liao, R., Colucci, W. S., & Walsh, K. (2005). Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. The Journal of Clinical Investigation, 115(8), 2108–2118. doi:10.1172/JCI24682.

    Article  PubMed  CAS  Google Scholar 

  97. Zavadil, J., Bitzer, M., Liang, D., Yang, Y. C., Massimi, A., Kneitz, S., Piek, E., & Bottinger, E. P. (2001). Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proceedings of the National Academy of Science U S A, 98(12), 6686–6691. doi:10.1073/pnas.11161439898/12/6686.

    Article  CAS  Google Scholar 

  98. Markwald, R. R., Fitzharris, T. P., & Smith, W. N. (1975). Sturctural analysis of endocardial cytodifferentiation. Developmental Biology, 42(1), 160–180.

    Article  PubMed  CAS  Google Scholar 

  99. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., & Fuster, V. (2012). Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: From cardiovascular development to disease. Circulation, 125(14), 1795–1808. doi:10.1161/CIRCULATIONAHA.111.040352.

    Article  PubMed  Google Scholar 

  100. Piera-Velazquez, S., Li, Z., & Jimenez, S. A. (2011). Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. American Journal of Pathology, 179(3), 1074–1080. doi:10.1016/j.ajpath.2011.06.001.

    Article  PubMed  CAS  Google Scholar 

  101. von Gise, A., & Pu, W. T. (2012). Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circulation Research, 110(12), 1628–1645. doi:10.1161/CIRCRESAHA.111.259960.

    Article  CAS  Google Scholar 

  102. van Meeteren, L. A., & ten Dijke, P. (2012). Regulation of endothelial cell plasticity by TGF-beta. Cell and Tissue Research, 347(1), 177–186. doi:10.1007/s00441-011-1222-6.

    Article  PubMed  CAS  Google Scholar 

  103. Goumans, M. J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P., & ten Dijke, P. (2002). Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal, 21(7), 1743–1753. doi:10.1093/emboj/21.7.1743.

    Article  PubMed  CAS  Google Scholar 

  104. Goumans, M. J., van Zonneveld, A. J., & ten Dijke, P. (2008). Transforming growth factor beta-induced endothelial-to-mesenchymal transition: A switch to cardiac fibrosis? Trends in Cardiovascular Medicine, 18(8), 293–298. doi:10.1016/j.tcm.2009.01.001.

    Article  PubMed  CAS  Google Scholar 

  105. Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R., & Olsen, B. R. (2010). Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Medicine, 16(12), 1400–1406. doi:10.1038/nm.2252.

    Article  PubMed  CAS  Google Scholar 

  106. Ghosh, A. K., & Vaughan, D. E. (2011). PAI-1 in tissue fibrosis. Journal of Cellular Physiology. doi:10.1002/jcp.22783.

  107. Lopez, D., Niu, G., Huber, P., & Carter, W. B. (2009). Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Archives of Biochemistry and Biophysics, 482(1–2), 77–82. doi:10.1016/j.abb.2008.11.016.

    Article  PubMed  CAS  Google Scholar 

  108. Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., Portillo, F., & Nieto, M. A. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83. doi:10.1038/35000025.

    Article  PubMed  CAS  Google Scholar 

  109. Feng, X. H., & Derynck, R. (2005). Specificity and versatility in tgf-beta signaling through Smads. Annual Review of Cell and Developmental Biology, 21, 659–693. doi:10.1146/annurev.cellbio.21.022404.142018.

    Article  PubMed  CAS  Google Scholar 

  110. Luo, Y., & Radice, G. L. (2005). N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. The Journal of Cell Biology, 169, 29–34. doi:10.1083/jcb.200411127.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This material is the result of work supported with resources and the use of facilities at the Central Texas Veterans Health Care System, Temple, Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. Baudino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowers, S.L.K., Baudino, T.A. Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature. J. of Cardiovasc. Trans. Res. 5, 783–793 (2012). https://doi.org/10.1007/s12265-012-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9407-2

Keywords

Navigation