Skip to main content

Advertisement

Log in

Optimizing Cardiac Repair and Regeneration Through Activation of the Endogenous Cardiac Stem Cell Compartment

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Given the aging of the Western World and declining death rates due to acute coronary syndromes, the increasing trends in the magnitude and morbidity of heart failure (HF) are predicted to continue for the foreseeable future. It is imperative to develop effective therapies for the amelioration and prevention of HF. The search for the best cell type to be used in clinical protocols of cardiac regeneration is still on. That the adult mammalian heart harbors endogenous, multipotent cardiac stem/progenitor cells (eCSCs) and that cardiomyocytes are replaced throughout adulthood represent a paradigm shift in cardiovascular biology. The presence of eCSCs supports the view that the heart can repair itself if the eCSCs can be properly stimulated. Pending a better understanding of eCSC biology, it should be possible to replace autologous cell transplantation-based myocardial regeneration protocols with an “off-the-shelf,” readily available, and effective regenerative/reparative therapy based on activation of the eCSCs in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kahan, B. D. (2011). Fifty years in the vineyard of transplantation: Looking back. Transplantation Proceedings, 43, 2853–2859.

    Article  PubMed  CAS  Google Scholar 

  2. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2012). American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2012 update: A report from the american heart association. Circulation, 125, 2–220.

    Article  Google Scholar 

  3. Jessup, M., & Brozena, S. (2003). Heart failure. The New England Journal of Medicine, 348, 2007–2018.

    Article  PubMed  Google Scholar 

  4. Terzic, A., & Nelson, T. J. (2010). Regenerative medicine advancing health care 2020. Journal of the American College of Cardiology, 55, 2254–2257.

    Article  PubMed  Google Scholar 

  5. Mercier, F. E., Ragu, C., & Scadden, D. T. (2011). The bone marrow at the crossroads of blood and immunity. Nature Reviews Immunology, 12, 49–60.

    Article  PubMed  Google Scholar 

  6. Simons, B. D., & Clevers, H. (2011). Stem cell self-renewal in intestinal crypt. Experimental Cell Research, 317, 2719–2724.

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs, E. (2009). The tortoise and the hair: slow-cycling cells in the stem cell race. Cell, 137, 811–819.

    Article  PubMed  CAS  Google Scholar 

  8. Badylak, S. F., Weiss, D. J., Caplan, A., & Macchiarini, P. (2012). Engineered whole organs and complex tissues. Lancet, 379, 943–952.

    Article  PubMed  Google Scholar 

  9. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  10. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  11. Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell, 132, 661–680.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  14. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39–49.

    Article  PubMed  CAS  Google Scholar 

  15. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481, 295–305.

    Article  PubMed  CAS  Google Scholar 

  16. Rountree, C. B., Mishra, L., & Willenbring, H. (2012). Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology, 55, 298–306.

    Article  PubMed  Google Scholar 

  17. Reule, S., & Gupta, S. (2011). Kidney regeneration and resident stem cells. Organogenesis, 7, 135–139.

    Article  PubMed  Google Scholar 

  18. Kopp, J. L., Dubois, C. L., Hao, E., Thorel, F., Herrera, P. L., & Sander, M. (2011). Progenitor cell domains in the developing and adult pancreas. Cell Cycle, 10, 1921–1927.

    Article  PubMed  CAS  Google Scholar 

  19. Kotton, D. N. (2012). Next generation regeneration: the hope and hype of lung stem cell research. American Journal of Respiratory and Critical Care Medicine. doi:10.1164/rccm.201202-0228PP.

  20. Buckingham, M., & Montarras, D. (2008). Skeletal muscle stem cells. Current Opinion in Genetics and Development, 18, 330–336.

    Article  PubMed  CAS  Google Scholar 

  21. Suh, H., Deng, W., & Gage, F. H. (2009). Signaling in adult neurogenesis. Annual Review of Cell and Developmental Biology, 25, 253–275.

    Article  PubMed  CAS  Google Scholar 

  22. Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. The New England Journal of Medicine, 341, 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  23. Soonpaa, M. H., & Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation Research, 83, 15–26.

    Article  PubMed  CAS  Google Scholar 

  24. Laflamme, M. A., & Murry, C. E. (2011). Heart regeneration. Nature, 473, 326–335.

    Article  PubMed  CAS  Google Scholar 

  25. Nadal-Ginard, B. (1978). Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell, 15, 855–864.

    Article  PubMed  CAS  Google Scholar 

  26. Chien, K. R., & Olson, E. N. (2002). Converging pathways and principles in heart development and disease: CV@CSH. Cell, 110, 153–162.

    Article  PubMed  CAS  Google Scholar 

  27. Oh, H., Taffet, G. E., Youker, K. A., Entman, M. L., Overbeek, P. A., Michael, L. H., et al. (2001). Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10308–10313.

    Article  PubMed  CAS  Google Scholar 

  28. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344, 1750–1757.

    Article  PubMed  CAS  Google Scholar 

  29. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. The New England Journal of Medicine, 346, 5–15.

    Article  PubMed  Google Scholar 

  30. Urbanek, K., Quaini, F., Tasca, G., Torella, D., Castaldo, C., Nadal-Ginard, B., et al. (2003). Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100, 10440–10445.

    Article  PubMed  CAS  Google Scholar 

  31. Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., Silvestri, F., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 8692–8697.

    Article  PubMed  CAS  Google Scholar 

  32. Anversa, P., & Nadal-Ginard, B. (2002). Myocyte renewal and ventricular remodelling. Nature, 415, 240–243.

    Article  PubMed  CAS  Google Scholar 

  33. Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research, 92, 139–150.

    Article  PubMed  CAS  Google Scholar 

  34. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  PubMed  CAS  Google Scholar 

  35. Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.

    Article  PubMed  CAS  Google Scholar 

  36. Boström, P., Mann, N., Wu, J., Quintero, P. A., Plovie, E. R., Panáková, D., et al. (2010). C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell, 143, 1072–1083.

    Article  PubMed  Google Scholar 

  37. Kajstura, J., Gurusamy, N., Ogórek, B., Goichberg, P., Clavo-Rondon, C., Hosoda, T., et al. (2010). Myocyte turnover in the aging human heart. Circulation Research, 107, 1374–1386.

    Article  PubMed  CAS  Google Scholar 

  38. Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.

    Article  PubMed  CAS  Google Scholar 

  39. Kühn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13, 962–969.

    Article  PubMed  Google Scholar 

  40. Torella, D., Ellison, G. M., Karakikes, I., & Nadal-Ginard, B. (2007). Resident cardiac stem cells. Cellular and Molecular Life Sciences, 64, 661–673.

    Article  PubMed  CAS  Google Scholar 

  41. Rasmussen, T. L., Raveendran, G., Zhang, J., & Garry, D. J. (2011). Getting to the heart of myocardial stem cells and cell therapy. Circulation, 123, 1771–1779.

    Article  PubMed  Google Scholar 

  42. Eisenberg, C. A., Burch, J. B., & Eisenberg, L. M. (2006). Bone marrow cells transdifferentiate to cardiomyocytes when introduced into the embryonic heart. Stem Cells, 24, 1236–1245.

    Article  PubMed  CAS  Google Scholar 

  43. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  44. Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8, 389–398.

    Article  PubMed  CAS  Google Scholar 

  45. Srivastava, D., & Ivey, K. N. (2006). Potential of stem-cell-based therapies for heart disease. Nature, 441, 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  46. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  PubMed  CAS  Google Scholar 

  47. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  48. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. The Journal of Biological Chemistry, 279, 11384–11391.

    Article  PubMed  CAS  Google Scholar 

  49. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.

    Article  PubMed  CAS  Google Scholar 

  50. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developments in Biologicals, 265, 262–275.

    Article  CAS  Google Scholar 

  51. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.

    Article  PubMed  CAS  Google Scholar 

  52. Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.

    Article  PubMed  CAS  Google Scholar 

  53. Kattman, S. J., Huber, T. L., & Keller, G. M. (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Developmental Cell, 11, 723–732.

    Article  PubMed  CAS  Google Scholar 

  54. Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L., Schultheiss, T. M., et al. (2006). Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell, 127, 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  55. Smart, N., Bollini, S., Dubé, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.

    Article  PubMed  CAS  Google Scholar 

  56. Ellison, G. M., Galuppo, V., Vicinanza, C., Aquila, I., Waring, C. D., Leone, A., et al. (2010). Cardiac stem and progenitor cell identification: different markers for the same cell? Frontiers in Bioscience, 2, 641–652.

    Article  Google Scholar 

  57. Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.

    Article  PubMed  CAS  Google Scholar 

  58. Ellison, G. M., Torella, D., Karakikes, I., & Nadal-Ginard, B. (2007). Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S52–S59.

    Article  PubMed  CAS  Google Scholar 

  59. Ellison, G. M., Waring, C. D., Vicinanza, C., & Torella, D. (2012). Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart, 98, 5–10.

    Article  PubMed  CAS  Google Scholar 

  60. Ellison, G. M., Torella, D., Karakikes, I., Purushothaman, S., Curcio, A., Gasparri, C., et al. (2007). Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. The Journal of Biological Chemistry, 282, 11397–11409.

    Article  PubMed  CAS  Google Scholar 

  61. Nadal-Ginard, B., & Fuster, V. (2007). Myocardial cell therapy at the crossroads. Nature Clinical Practice. Cardiovascular Medicine, 4, 1.

    Article  PubMed  Google Scholar 

  62. Janssens, S. (2010). Stem cells in the treatment of heart disease. Annual Review of Medicine, 61, 287–300.

    Article  PubMed  CAS  Google Scholar 

  63. Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.

    Article  PubMed  Google Scholar 

  64. Murry, C. E., Field, L. J., & Menasché, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112, 3174–3183.

    Article  PubMed  Google Scholar 

  65. Janssens, S. P. (2011). Cardiac bone marrow cell therapy: The proof of the pudding remains in the eating. European Heart Journal, 32, 1697–1700.

    Article  PubMed  Google Scholar 

  66. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  67. Kubal, C., Sheth, K., Nadal-Ginard, B., & Galiñanes, M. (2006). Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans. The Journal of Thoracic and Cardiovascular Surgery, 132, 1112–1118.

    Article  PubMed  Google Scholar 

  68. Lai, V. K., Linares-Palomino, J., Nadal-Ginard, B., & Galiñanes, M. (2009). Bone marrow cell-induced protection of the human myocardium: Characterization and mechanism of action. The Journal of Thoracic and Cardiovascular Surgery, 138, 1400–1408.

    Article  PubMed  CAS  Google Scholar 

  69. Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.

    Article  PubMed  CAS  Google Scholar 

  70. Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., Barr, S., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549.

    Article  PubMed  CAS  Google Scholar 

  71. Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 208–216.

    Article  PubMed  CAS  Google Scholar 

  72. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922.

    Article  PubMed  CAS  Google Scholar 

  73. Behfar, A., Yamada, S., Crespo-Diaz, R., Nesbitt, J. J., Rowe, L. A., Perez-Terzic, C., et al. (2010). Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. Journal of the American College of Cardiology, 56, 721–734.

    Article  PubMed  CAS  Google Scholar 

  74. Ellison, G. M., Torella, D., Dellegrottaglie, S., Perez-Martinez, C., Perez de Prado, A., Vicinanza, C., et al. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology, 58, 977–986.

    Article  PubMed  CAS  Google Scholar 

  75. Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.

    Article  PubMed  Google Scholar 

  76. Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet, 379, 895–904.

    Article  PubMed  Google Scholar 

  77. Torella, D., Rota, M., Nurzynska, D., Musso, E., Monsen, A., Shiraishi, I., et al. (2004). Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research, 94, 514–524.

    Article  PubMed  CAS  Google Scholar 

  78. Chimenti, C., Kajstura, J., Torella, D., Urbanek, K., Heleniak, H., Colussi, C., et al. (2003). Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circulation Research, 93, 604–613.

    Article  PubMed  CAS  Google Scholar 

  79. Torella, D., Ellison, G. M., Méndez-Ferrer, S., Ibanez, B., & Nadal-Ginard, B. (2006). Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S8–S13.

    Article  PubMed  CAS  Google Scholar 

  80. Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258.

    Article  PubMed  CAS  Google Scholar 

  81. Medicetty, S., Wiktor, D., Lehman, N., Raber, A., Popović, Z. B., Deans, R., et al. (2011). Percutaneous adventitial delivery of allogeneic bone marrow derived stem cells via infarct related artery improves long-term ventricular function in acute myocardial infarction. Cell Transplantation. doi:10.3727/096368911X603657.

  82. Penn, M. S., Ellis, S., Gandhi, S., Greenbaum, A., Hodes, Z., Mendelsohn, F. O., et al. (2012). Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: Phase I clinical study. Circulation Research, 110, 304–311.

    Article  PubMed  CAS  Google Scholar 

  83. Malliaras, K., Li, T. S., Luthringer, D., Terrovitis, J., Cheng, K., Chakravarty, T., et al. (2012). Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation, 125, 100–112.

    Article  PubMed  CAS  Google Scholar 

  84. Kawaguchi, N., Smith, A. J., Waring, C. D., Hasan, M. K., Miyamoto, S., Matsuoka, R., et al. (2010). c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One, 5, e14297.

    Article  PubMed  CAS  Google Scholar 

  85. Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202.

    Article  PubMed  Google Scholar 

  86. Ellison, G. M., Torella, D., Trigueros, C., Gonzalez, A., Waring, C., Perez-Martinez, C., et al. (2009). Use of heterologous non-matched cardiac stem cells (CSCs) without immunosuppression as an effective regenerating agent in a porcine model of acute myocardial infarction. European Heart Journal, 30(Abstract Supplement), 495.

    Google Scholar 

  87. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.

    Article  PubMed  CAS  Google Scholar 

  88. Huang, X. P., Sun, Z., Miyagi, Y., McDonald Kinkaid, H., Zhang, L., Weisel, R. D., et al. (2010). Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation, 122, 2419–2429.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina M. Ellison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellison, G.M., Nadal-Ginard, B. & Torella, D. Optimizing Cardiac Repair and Regeneration Through Activation of the Endogenous Cardiac Stem Cell Compartment. J. of Cardiovasc. Trans. Res. 5, 667–677 (2012). https://doi.org/10.1007/s12265-012-9384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9384-5

Keywords

Navigation