Skip to main content
Log in

Loss of Compliance in Small Arteries, but Not in Conduit Arteries, After 6 Weeks Exposure to High Fat Diet

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Arterial stiffness is a key marker in metabolic diseases and can be evaluated by arterial compliance. Most compliance measurements are performed in large conduit arteries in advanced stage of metabolic diseases, which may not provide information on mechanisms associated with the initiation of the pathology. For this reason, we compared arterial compliance of two different size arteries: carotid and a smaller artery (thoracodorsal artery, TDA). The arterial compliance was compared between control and high fat-fed mice for 6 weeks. We show that the compliance of the TDAs was dramatically reduced in high fat-fed mice whereas the compliance of the carotids remained unchanged. An abundance of collagen deposition in the media/adventitia of the carotids and TDAs was observed in high fat-fed mice. These results demonstrate that the structural and mechanical properties of small arteries are rapidly altered even after only 6 weeks of high fat feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., & Brown, M. (2011). Health and economic burden of the projected obesity trends in the USA and the UK. Lancet, 378(9793), 815–825. doi:10.1016/S0140-6736(11)60814-3.

    Article  PubMed  Google Scholar 

  2. Mokdad, A. H., Bowman, B. A., Ford, E. S., Vinicor, F., Marks, J. S., & Koplan, J. P. (2001). The continuing epidemics of obesity and diabetes in the United States. Journal of the American Medical Association, 286(10), 1195–1200.

    Article  PubMed  CAS  Google Scholar 

  3. Shirwany, N. A., & Zou, M. H. (2010). Arterial stiffness: a brief review. Acta Pharmacologica Sinica, 31(10), 1267–1276. doi:10.1038/aps.2010.123.

    Article  PubMed  CAS  Google Scholar 

  4. Adji, A., O'Rourke, M. F., & Namasivayam, M. (2010). Arterial stiffness, its assessment, prognostic value, and implications for treatment. American Journal of Hypertension, 24(1), 5–17. doi:10.1038/ajh.2010.192.

    Article  PubMed  Google Scholar 

  5. Rizzoni, D., De Ciuceis, C., Porteri, E., Semeraro, F., & Rosei, E. A. (2011). Structural alterations in small resistance arteries in obesity. Basic & Clinical Pharmacology & Toxicology. doi:10.1111/j.1742-7843.2011.00786.x.

  6. Drzewiecki, G., Field, S., Moubarak, I., & Li, J. K. (1997). Vessel growth and collapsible pressure–area relationship. American Journal of Physiology, 273(4 Pt 2), H2030–H2043.

    PubMed  CAS  Google Scholar 

  7. Souza-Smith, F. M., Katz, P. S., Trask, A. J., Stewart, J. A., Jr., Lord, K. C., Varner, K. J., Vassallo, D. V., & Lucchesi, P. A. (2011). Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling. PLoS One, 6(8), e23337. doi:10.1371/journal.pone.0023337.

    Article  PubMed  CAS  Google Scholar 

  8. Santelices, L. C., Rutman, S. J., Prantil-Baun, R., Vorp, D. A., & Ahearn, J. M. (2008). Relative contributions of age and atherosclerosis to vascular stiffness. Clinical and Translational Science, 1(1), 62–66. doi:10.1111/j.1752-8062.2008.00014.x.

    Article  PubMed  CAS  Google Scholar 

  9. Santelices, L. C., Calano, S. J., Erhart, J. C., Prantil, R. L., Haney, J. L., Vorp, D. A., & Ahearn, J. M. (2007). Experimental system for ex vivo measurement of murine aortic stiffness. Physiological Measurement, 28(8), N39–N49. doi:10.1088/0967-3334/28/8/N01.

    Article  PubMed  CAS  Google Scholar 

  10. Rizzoni, D., Porteri, E., Boari, G. E., De Ciuceis, C., Sleiman, I., Muiesan, M. L., Castellano, M., Miclini, M., & Agabiti-Rosei, E. (2003). Prognostic significance of small-artery structure in hypertension. Circulation, 108(18), 2230–2235. doi:10.1161/01.CIR.0000095031.51492.C5.

    Article  PubMed  Google Scholar 

  11. Johnstone, S. R., Ross, J., Rizzo, M. J., Straub, A. C., Lampe, P. D., Leitinger, N., & Isakson, B. E. (2009). Oxidized phospholipid species promote in vivo differential cx43 phosphorylation and vascular smooth muscle cell proliferation. American Journal of Pathology, 175(2), 916–924. doi:10.2353/ajpath.2009.090160.

    Article  PubMed  CAS  Google Scholar 

  12. Soucy, K. G., Ryoo, S., Benjo, A., Lim, H. K., Gupta, G., Sohi, J. S., Elser, J., Aon, M. A., Nyhan, D., Shoukas, A. A., & Berkowitz, D. E. (2006). Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness. Journal of Applied Physiology, 101(6), 1751–1759. doi:10.1152/japplphysiol.00138.2006.

    Article  PubMed  CAS  Google Scholar 

  13. Reddy, A. K., Li, Y. H., Pham, T. T., Ochoa, L. N., Trevino, M. T., Hartley, C. J., Michael, L. H., Entman, M. L., & Taffet, G. E. (2003). Measurement of aortic input impedance in mice: effects of age on aortic stiffness. American Journal of Physiology—Heart and Circulatory Physiology, 285(4), H1464–H1470. doi:10.1152/ajpheart.00004.2003.

    PubMed  CAS  Google Scholar 

  14. Burkitt, H. G., Young, B., Heath, J. W. (1993) Wheater's Functional Histology, A Text and Colour Atlas. Third Edition edn. Churchill Livingston

  15. Derosa, G., D'Angelo, A., Tinelli, C., Devangelio, E., Consoli, A., Miccoli, R., Penno, G., Del Prato, S., Paniga, S., & Cicero, A. F. (2007). Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes & Metabolism, 33(2), 129–134. doi:10.1016/j.diabet.2006.11.008.

    Article  CAS  Google Scholar 

  16. Thrailkill, K. M., Bunn, R. C., Moreau, C. S., Cockrell, G. E., Simpson, P. M., Coleman, H. N., Frindik, J. P., Kemp, S. F., & Fowlkes, J. L. (2007). Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care, 30(9), 2321–2326. doi:10.2337/dc07-0162.

    Article  PubMed  CAS  Google Scholar 

  17. Uribarri, J., & Tuttle, K. R. (2006). Advanced glycation end products and nephrotoxicity of high-protein diets. Clinical Journal of the American Society of Nephrology, 1(6), 1293–1299. doi:10.2215/CJN.01270406.

    Article  PubMed  CAS  Google Scholar 

  18. Grassi, G., & Diez, J. (2009). Obesity-related cardiac and vascular structural alterations: beyond blood pressure overload. Journal of Hypertension, 27(9), 1750–1752. doi:10.1097/HJH.0b013e328330e8ae.

    Article  PubMed  CAS  Google Scholar 

  19. Flamant, M., Placier, S., Dubroca, C., Esposito, B., Lopes, I., Chatziantoniou, C., Tedgui, A., Dussaule, J. C., & Lehoux, S. (2007). Role of matrix metalloproteinases in early hypertensive vascular remodeling. Hypertension, 50(1), 212–218. doi:10.1161/HYPERTENSIONAHA.107.089631.

    Article  PubMed  CAS  Google Scholar 

  20. Virdis, A., Colucci, R., Neves, M. F., Rugani, I., Aydinoglu, F., Fornai, M., Ippolito, C., Antonioli, L., Duranti, E., Solini, A., Bernardini, N., Blandizzi, C., & Taddei, S. (2011). Resistance artery mechanics and composition in angiotensin II-infused mice: effects of cyclooxygenase-1 inhibition. European Heart Journal. doi:10.1093/eurheartj/ehr138.

Download references

Acknowledgments

We are grateful to the University of Virginia Histology Core for sectioning and stains of the TDAs and carotids, and Jan Redick and Stacey Guillot at the Advanced Microscopy Core services for TEM sectioning and technical help. This work was supported by National Institute of Health grant HL088554 (B.E.I.), American Heart Association Scientist Development Grant (B.E.I.) and an American Heart Association postdoctoral fellowship (M.B., S.R.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brant E. Isakson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billaud, M., Johnstone, S.R. & Isakson, B.E. Loss of Compliance in Small Arteries, but Not in Conduit Arteries, After 6 Weeks Exposure to High Fat Diet. J. of Cardiovasc. Trans. Res. 5, 256–263 (2012). https://doi.org/10.1007/s12265-012-9354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9354-y

Keywords

Navigation