Skip to main content

Advertisement

Log in

Stem Cells in the Infarcted Heart

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Stem cell transplantation is currently generating a significant interest for use in the future treatment of cardiovascular diseases. Stem cell populations are rapidly increasing, and we are still in the search of optimal cell types to use in clinical trials as bone marrow stem cells did not show significant improvement in cardiac function following transplantation. Experimental stem cell studies raised the question on the true differentiation of tissue-specific cell types following transplantation. In fact, recent studies suggest that improved cardiac function is associated with inhibition of apoptosis and fibrosis provided by factors released from stem cells following transplantation. In this review, we will discuss the effects of transplanted stem cells on engraftment and differentiation as well as factors released from stem cells on apoptosis and cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Anversa, P., Kajstura, J., & Olivetti, G. (1996). Myocyte death in heart failure. Current Opinion in Cardiology, 11, 245–251.

    Article  CAS  PubMed  Google Scholar 

  2. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.

    Article  CAS  PubMed  Google Scholar 

  3. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.

    Article  PubMed  Google Scholar 

  4. Dai, W., Hale, S. L., & Kloner, R. A. (2007). Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats 1. Regeneración Médica, 2, 63–68.

    Google Scholar 

  5. Emgard, M., Hallin, U., Karlsson, J., Bahr, B. A., Brundin, P., & Blomgren, K. (2003). Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: A role for protease activation. Journal of Neurochemistry, 86, 1223–1232.

    Article  CAS  PubMed  Google Scholar 

  6. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.

    Article  CAS  PubMed  Google Scholar 

  7. Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB Journal, 20, 661–669.

    Article  CAS  PubMed  Google Scholar 

  8. Haider, H. K., & Ashraf, M. (2005). Bone marrow cell transplantation in clinical perspective. Journal of Molecular and Cellular Cardiology, 38, 225–235.

    Article  CAS  PubMed  Google Scholar 

  9. Haider, H. K., & Ashraf, M. (2005). Bone marrow stem cell transplantation for cardiac repair. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2557–H2567.

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi, M., Li, T. S., Ito, H., Mikamo, A., & Hamano, K. (2004). Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: An experimental study. Cell Transplantation, 13, 639–647.

    Article  PubMed  Google Scholar 

  11. Hodgson, D. M., Behfar, A., Zingman, L. V., Kane, G. C., Perez-Terzic, C., Alekseev, A. E., et al. (2004). Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 287, H471–H479.

    Article  CAS  PubMed  Google Scholar 

  12. Jugdutt, B. I. (2003). Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets. Cardiovascular & Haematological Disorders, 3, 1–30.

    Article  CAS  Google Scholar 

  13. Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation, 108, 1395–1403.

    Article  PubMed  Google Scholar 

  14. Kofidis, T., de Bruin, J. L., Yamane, T., Balsam, L. B., Lebl, D. R., Swijnenburg, R. J., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22, 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  15. Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., Swijnenburg, R. J., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111, 2486–2493.

    Article  CAS  PubMed  Google Scholar 

  16. Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction 12. Circulation Research, 95, 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, D., & Jugdutt, B. I. (2003). Apoptosis and oxidants in the heart. Journal of Laboratory and Clinical Medicine, 142, 288–297.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, D., Kamp, T. J., & LeWinter, M. M. (2005). Embryonic stem cells: Differentiation into cardiomyocytes and potential for heart repair and regeneration. Coronary Artery Disease, 16, 111–116.

    Article  PubMed  Google Scholar 

  19. Kumar, D., Lou, H., & Singal, P. K. (2002). Oxidative stress and apoptosis in heart dysfunction. Herz, 27, 662–668.

    Article  PubMed  Google Scholar 

  20. Laumonier, T., Yang, S., Konig, S., Chauveau, C., Anegon, I., Hoffmeyer, P., et al. (2008). Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Molecular Therapy, 16, 404–410.

    Article  CAS  PubMed  Google Scholar 

  21. Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127.

    Article  CAS  PubMed  Google Scholar 

  22. Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355, 1199–1209.

    Article  CAS  PubMed  Google Scholar 

  23. Menard, C., Hagege, A. A., Agbulut, O., Barro, M., Morichetti, M. C., Brasselet, C., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet, 366, 1005–1012.

    Article  PubMed  Google Scholar 

  24. Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113, 1287–1294.

    Article  PubMed  Google Scholar 

  25. Min, J. Y., Chen, Y., Malek, S., Meissner, A., Xiang, M., Ke, Q., et al. (2005). Stem cell therapy in the aging hearts of Fisher 344 rats: Synergistic effects on myogenesis and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 130, 547–553.

    Article  PubMed  Google Scholar 

  26. Min, J. Y., Yang, Y., Converso, K. L., Liu, L., Huang, Q., Morgan, J. P., et al. (2002). Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. Journal of Applied Physiology, 92, 288–296.

    Article  PubMed  CAS  Google Scholar 

  27. Moriya, K., Yoshikawa, M., Saito, K., Ouji, Y., Nishiofuku, M., Hayashi, N., et al. (2007). Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World Journal of Gastroenterology, 13, 866–873.

    PubMed  Google Scholar 

  28. Muller-Ehmsen, J., Whittaker, P., Kloner, R. A., Dow, J. S., Sakoda, T., Long, T. I., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34, 107–116.

    Article  PubMed  CAS  Google Scholar 

  29. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.

    Article  PubMed  Google Scholar 

  30. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells 4. Circulation, 120, 408–416.

    Article  PubMed  Google Scholar 

  31. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  32. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  33. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  34. Schachinger, V., Assmus, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44, 1690–1699.

    Article  PubMed  Google Scholar 

  35. Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355, 1210–1221.

    Article  CAS  PubMed  Google Scholar 

  36. Singla, D. K. (2009). Embryonic stem cells in cardiac repair and regeneration. Antioxidants and Redox Signaling, 11(8), 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  37. Singla, D. K., Hacker, T. A., Ma, L., Douglas, P. S., Sullivan, R., Lyons, G. E., et al. (2006). Transplantation of embryonic stem cells into the infarcted mouse heart: Formation of multiple cell types. Journal of Molecular and Cellular Cardiology, 40, 195–200.

    Article  CAS  PubMed  Google Scholar 

  38. Singla, D. K., Lyons, G. E., & Kamp, T. J. (2007). Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1308–H1314.

    Article  CAS  PubMed  Google Scholar 

  39. Singla, D. K., & McDonald, D. E. (2007). Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1590–H1595.

    Article  CAS  PubMed  Google Scholar 

  40. Singla, D. K., Singla, R. D., & McDonald, D. E. (2008). Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through P1–3kinase/Akt but not ERK pathway. American Journal of Physiology Heart and Circulatory Physiology, 294(2), H907–H913.

    Article  CAS  Google Scholar 

  41. Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110, II219–II224.

    PubMed  Google Scholar 

  42. Suzuki, K., Smolenski, R. T., Jayakumar, J., Murtuza, B., Brand, N. J., & Yacoub, M. H. (2000). Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation, 102, III216–III221.

    CAS  PubMed  Google Scholar 

  43. Tendera, M., Wojakowski, W., Ruzyllo, W., Chojnowska, L., Kepka, C., Tracz, W., et al. (2009). Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: Results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial 1. European Heart Journal, 30, 1313–1321.

    Article  PubMed  Google Scholar 

  44. Togel, F., Hu, Z., Weiss, K., Isaac, J., Lange, C., & Westenfelder, C. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms 9. American Journal of Physiology. Renal, Physiology, 289, F31–F42.

    Article  CAS  Google Scholar 

  45. Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis 1. Journal of Molecular and Cellular Cardiology, 37, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  46. Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction 1. Circulation, 110, 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  47. Xu, M., Uemura, R., Dai, Y., Wang, Y., Pasha, Z., & Ashraf, M. (2007). In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. Journal of Molecular and Cellular Cardiology, 42, 441–448.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, M., Uemura, R., Dai, Y., Wang, Y., Pasha, Z., & Ashraf, M. (2007). In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function 1. Journal of Molecular and Cellular Cardiology, 42, 441–448.

    Article  CAS  PubMed  Google Scholar 

  49. Yamada, S., Nelson, T. J., Behfar, A., Crespo-Diaz, R. J., Fraidenraich, D., & Terzic, A. (2009). Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype. Stem Cells, 27, 1697–1705.

    Article  PubMed  Google Scholar 

  50. Yamada, S., Nelson, T. J., Behfar, A., Crespo-Diaz, R. J., Fraidenraich, D., & Terzic, A. (2009). Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype 5. Stem Cells, 27, 1697–1705.

    Article  PubMed  Google Scholar 

  51. Zhang, Z., Deb, A., Zhang, Z., Pachori, A., He, W., Guo, J., et al. (2009). Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a 1. J Mol Cell Cardiol, 46, 370–377.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., & Murry, C. E. (2001). Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33, 907–921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge the support provided by 1R21 HL085795-01A1 and 1R01HL090646-01 (to DKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinender K. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, D.K. Stem Cells in the Infarcted Heart. J. of Cardiovasc. Trans. Res. 3, 73–78 (2010). https://doi.org/10.1007/s12265-009-9151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9151-4

Keywords

Navigation