Skip to main content
Log in

Functional MRI mapping of category-specific sites associated with naming of famous faces, animals and man-made objects

名人面孔、 动物和人造物类别特异性命名区脑定位的功能磁共振研究

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Category-specific recognition and naming deficits have been observed in a variety of patient populations. However, the category-specific cortices for naming famous faces, animals and man-made objects remain controversial. The present study aimed to study the specific areas involved in naming pictures of these 3 categories using functional magnetic resonance imaging.

Methods

Functional images were analyzed using statistical parametric mapping and the 3 different contrasts were evaluated using t statistics by comparing the naming tasks to their baselines. The contrast images were entered into a random-effects group level analysis. The results were reported in Montreal Neurological Institute coordinates, and anatomical regions were identified using an automated anatomical labeling method with XJview 8.

Results

Naming famous faces caused more activation in the bilateral head of the hippocampus and amygdala with significant left dominance. Bilateral activation of pars triangularis and pars opercularis in the naming of famous faces was also revealed. Naming animals evoked greater responses in the left supplementary motor area, while naming man-made objects evoked more in the left premotor area, left pars orbitalis and right supplementary motor area. The extent of bilateral fusiform gyri activation by naming man-made objects was much larger than that by naming of famous faces or animals. Even in the overlapping sites of activation, some differences among the categories were found for activation in the fusiform gyri.

Conclusion

The cortices involved in the naming process vary with the naming of famous faces, animals and man-made objects. This finding suggests that different categories of pictures should be used during intra-operative language mapping to generate a broader map of language function, in order to minimize the incidence of false-negative stimulation and permanent post-operative deficits.

摘要

目的

在一些疾病中, 病人会出现类别特异性的识别和命名障碍, 但有关名人面孔、 动物和人造物三种不同类型命名任务的脑定位研究仍存在争议。 本研究旨在利用功能磁共振(fMRI)研究这三种不同类型命名任务的脑激活特点。

方法

采用SPM8软件进行脑功能图像分析, 命名任务与基线任务采用t检验统计, 然后进行群组分析, 结果用MNI坐标表示, 解剖位置用XJview 8自动标记。

结果

名人面孔命名区主要位于双侧前颞叶包括海马和杏仁核, 且存在左侧优势, 同时还激活双侧颞下回三角部和盖部;命名动物主要激活左侧辅助运动区;而命名人造物主要激活左侧运动前区和右侧辅助运动区, 三种任务均有双侧梭状回激活, 但命名人造物激活区范围比其余两种任务都大。

结论

人、 动物和人造物三种不同类型命名任务的脑定位存在差异, 这提示在术中定位功能区过程中, 需要选择不同类型的命名任务, 以减少阴性刺激和术后永久性功能障碍的发生率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med 2008, 358(1): 18–27.

    Article  PubMed  CAS  Google Scholar 

  2. Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics 2009, 6(3): 478–486.

    Article  PubMed  Google Scholar 

  3. Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008, 62(4): 753–764; discussion 264–246.

    Article  PubMed  Google Scholar 

  4. McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating lowg-rade gliomas. Neurosurgery 2008, 63(4): 700–707; author reply 707–708.

    Article  PubMed  Google Scholar 

  5. Berger MS, Hadjipanayis CG. Surgery of intrinsic cerebral tumors. Neurosurgery 2007, 61(1 Suppl): 279–304; discussion 304–305.

    PubMed  Google Scholar 

  6. Bertani G, Fava E, Casaceli G, Carrabba G, Casarotti A, Papagno C, et al. Intraoperative mapping and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurg Focus 2009, 27(4): E4.

    Article  PubMed  Google Scholar 

  7. Ilmberger J, Ruge M, Kreth FW, Briegel J, Reulen HJ, Tonn JC. Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis. J Neurosurg 2008, 109(4): 583–592.

    Article  PubMed  Google Scholar 

  8. Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 2009, 64(5): 836–845; discussion 345–346.

    Article  PubMed  Google Scholar 

  9. Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia 2008, 46(4): 927–934.

    Article  PubMed  Google Scholar 

  10. Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol 2009, 21(6): 543–549.

    Article  PubMed  Google Scholar 

  11. Duffau H, Peggy GST, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 2008, 109(3): 461–471.

    Article  PubMed  Google Scholar 

  12. Duffau H. Awake surgery for nonlanguage mapping. Neurosurgery 2010, 66(3): 523–529.

    Article  PubMed  Google Scholar 

  13. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 2002, 125: 199–214.

    Google Scholar 

  14. Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 2010, 152(2): 185–193.

    Article  Google Scholar 

  15. Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg 1999, 90(1): 35–41.

    Article  PubMed  CAS  Google Scholar 

  16. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989, 71(3): 316–326.

    Article  PubMed  CAS  Google Scholar 

  17. Chouinard PA, Goodale MA. Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 2009, 48(2): 409–418.

    Article  PubMed  Google Scholar 

  18. Lag T. Category-specific effects in object identification: what is “normal”. Cortex 2005, 41(6): 833–841.

    Article  PubMed  Google Scholar 

  19. Hillis AE, Caramazza A. Category-specific naming and comprehension impairment: a double dissociation. Brain 1991, 114(Pt 5): 2081–2094.

    Article  PubMed  Google Scholar 

  20. Tippett LJ, Glosser G, Farah MJ. A category-specific naming impairment after temporal lobectomy. Neuropsychologia 1996, 34(2): 139–146.

    Article  PubMed  CAS  Google Scholar 

  21. Lu LH, Crosson B, Nadeau SE, Heilman KM, Gonzalez-Rothi LJ, Raymer A, et al. Category-specific naming deficits for objects and actions: semantic attribute and grammatical role hypotheses. Neuropsychologia 2002, 40(9): 1608–1621.

    Article  PubMed  Google Scholar 

  22. Drane DL, Ojemann GA, Aylward E, Ojemann JG, Johnson LC, Silbergeld DL, et al. Category-specific naming and recognition deficits in temporal lobe epilepsy surgical patients. Neuropsychologia 2008, 46(5): 1242–1255.

    Article  PubMed  Google Scholar 

  23. Milders M. Naming famous faces and buildings. Cortex 2000, 36(1): 138–145.

    Article  PubMed  CAS  Google Scholar 

  24. Rizzo S, Venneri A, Papagno C. Famous face recognition and naming test: a normative study. Neurol Sci 2002, 23(4): 153–159.

    Article  PubMed  CAS  Google Scholar 

  25. Gainotti G, Barbier A, Marra C. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain 2003, 126(Pt 4): 792–803.

    Article  PubMed  Google Scholar 

  26. Griffith HR, Richardson E, Pyzalski RW, Bell B, Dow C, Hermann BP, et al. Memory for famous faces and the temporal pole: functional imaging findings in temporal lobe epilepsy. Epilepsy Behav 2006, 9(1): 173–180.

    Article  PubMed  Google Scholar 

  27. Avidan G, Behrmann M. Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr Biol 2009, 19(13): 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  28. Seidenberg M, Griffith R, Sabsevitz D, Moran M, Haltiner A, Bell B, et al. Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy. Neuropsychologia 2002, 40(4): 446–456.

    Article  PubMed  Google Scholar 

  29. Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology 2006, 20(1): 1–10.

    Article  PubMed  Google Scholar 

  30. Giussani C, Roux FE, Bello L, Lauwers-Cances V, Papagno C, Gaini SM, et al. Who is who: areas of the brain associated with recognizing and naming famous faces. J Neurosurg 2009, 110(2): 289–299.

    Article  PubMed  Google Scholar 

  31. Ruff IM, Petrovich BNM, Peck KK, Hou BL, Tabar V, Brennan CW, et al. Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR Am J Neuroradiol 2008, 29(3): 528–535.

    Article  PubMed  CAS  Google Scholar 

  32. Joseph JE. Functional neuroimaging studies of category specificity in object recognition: a critical review and meta-analysis. Cogn Affect Behav Neurosci 2001, 1(2): 119–136.

    Article  PubMed  CAS  Google Scholar 

  33. Lambert NA, Swain MA, Miller LA, Caine D. Exploring the neural organization of person-related knowledge: lateralization of lesion, category specificity, and stimulus modality effects. Neuropsychology 2006, 20(3): 346–354.

    Article  PubMed  Google Scholar 

  34. Di RE, Crow TJ, Walker MA, Black G, Chance SA. Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 2009, 166(2-3): 102–115.

    Article  Google Scholar 

  35. Chao LL, Haxby JV, Martin A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 1999, 2(10): 913–919.

    Article  PubMed  CAS  Google Scholar 

  36. Lehmann C, Mueller T, Federspiel A, Hubl D, Schroth G, Huber O, et al. Dissociation between overt and unconscious face processing in fusiform face area. Neuroimage 2004, 21(1): 75–83.

    Article  PubMed  Google Scholar 

  37. Grill-Spector K, Knouf N, Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 2004, 7(5): 555–562.

    Article  PubMed  CAS  Google Scholar 

  38. Rhodes G, Byatt G, Michie PT, Puce A. Is the fusiform face area specialized for faces, individuation, or expert individuation. J Cogn Neurosci 2004, 16(2): 189–203.

    Article  PubMed  Google Scholar 

  39. Liljestrom M, Tarkiainen A, Parviainen T, Kujala J, Numminen J, Hiltunen J, et al. Perceiving and naming actions and objects. Neuroimage 2008, 41(3): 1132–1141.

    Article  PubMed  CAS  Google Scholar 

  40. Lambert NA, Swain MA, Miller LA, Caine D. Exploring the neural organization of person-related knowledge: lateralization of lesion, category specificity, and stimulus modality effects. Neuropsychology 2006, 20(3): 346–354.

    Article  PubMed  Google Scholar 

  41. Okada T, Tanaka S, Nakai T, Nishizawa S, Inui T, Sadato N, et al. Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neurosci Lett 2000, 296(1): 33–36.

    Article  PubMed  CAS  Google Scholar 

  42. Glosser G, Salvucci AE, Chiaravalloti ND. Naming and recognizing famous faces in temporal lobe epilepsy. Neurology 2003, 61(1): 81–86.

    PubMed  CAS  Google Scholar 

  43. Sergent J, Ohta S, MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 1992, 115: 15–36.

    Article  PubMed  Google Scholar 

  44. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997, 17(11): 4302–4311.

    PubMed  CAS  Google Scholar 

  45. Puce A, Allison T, Gore JC, McCarthy G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 1995, 74(3): 1192–1199.

    PubMed  CAS  Google Scholar 

  46. Kreifelts B, Ethofer T, Shiozawa T, Grodd W, Wildgruber D. Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus. Neuropsychologia 2009, 47(14): 3059–3066.

    Article  PubMed  Google Scholar 

  47. Leube DT, Yoon HW, Rapp A, Erb M, Grodd W, Bartels M, et al. Brain regions sensitive to the face inversion effect: a functional magnetic resonance imaging study in humans. Neurosci Lett 2003, 342(3): 143–146.

    Article  PubMed  CAS  Google Scholar 

  48. Glosser G, Salvucci AE, Chiaravalloti ND. Naming and recognizing famous faces in temporal lobe epilepsy. Neurology 2003, 61(1): 81–86.

    PubMed  CAS  Google Scholar 

  49. Grabowski TJ, Damasio H, Damasio AR. Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage 1998, 7(3): 232–243.

    Article  PubMed  CAS  Google Scholar 

  50. Joubert S, Felician O, Barbeau E, Ranjeva JP, Christophe M, Didic M, et al. The right temporal lobe variant of frontotemporal dementia: cognitive and neuroanatomical profile of three patients. J Neurol 2006, 253(11): 1447–1458.

    Article  PubMed  Google Scholar 

  51. Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology 2006, 20(1): 1–10.

    Article  PubMed  Google Scholar 

  52. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. A neural basis for lexical retrieval. Nature 1996, 380(6574): 499–505.

    Article  PubMed  CAS  Google Scholar 

  53. Caramazza A, Shelton JR. Domain-specific knowledge systems in the brain the animate-inanimate distinction. J Cogn Neurosci 1998, 10(1): 1–34.

    Article  PubMed  CAS  Google Scholar 

  54. Petrides M, Pandya DN. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 1999, 11(3): 1011–1036.

    Article  PubMed  CAS  Google Scholar 

  55. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 2002, 16(2): 291–310.

    Article  PubMed  CAS  Google Scholar 

  56. Finkbeiner M, Slotnick SD, Moo LR, Caramazza A. Involuntary capture of attention produces domain-specific activation. Neuroreport 2007, 18(10): 975–979.

    Article  PubMed  Google Scholar 

  57. Garn CL, Allen MD, Larsen JD. An fMRI study of sex differences in brain activation during object naming. Cortex 2009, 45(5): 610–618.

    Article  PubMed  Google Scholar 

  58. Chouinard PA, Large ME, Chang EC, Goodale MA. Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI动物;人造物investigation of the size-weight illusion. Neuroimage 2009, 44(1): 200–212.

    Article  PubMed  Google Scholar 

  59. Rizzolatti G, Arbib MA. Language within our grasp. Trends Neurosci 1998, 21(5): 188–194.

    Article  PubMed  CAS  Google Scholar 

  60. Arbib MA. From grasp to language: embodied concepts and the challenge of abstraction. J Physiol Paris 2008, 102(1–3): 4–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Cheng Lu  (卢亦成).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, HM., Jiang, T., Wang, WM. et al. Functional MRI mapping of category-specific sites associated with naming of famous faces, animals and man-made objects. Neurosci. Bull. 27, 307–318 (2011). https://doi.org/10.1007/s12264-011-1046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1046-0

Keywords

关键词

Navigation