Skip to main content
Log in

Flavin mononucleotide mediated microbial fuel cell in the presence of Shewanella putrefaciens CN32 and iron-bearing mineral

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We investigate the workability of electron transfer mediators (ETMs) for the enhanced microbial fuel cell (MFC) operated by Shewanella putrefaciens CN32. In open-circuit, natural ETMs showed 128 ~ 166% of enhancement in the difference of electrical potential compared to that without ETMs (0.41 V), while MFC with synthetic ETMs achieved 200 ~ 250% of enhancement, showing a liner relationship between the electric potentials and ETMs’ redox potentials (R2 = 0.91). Especially, flavin mononucleotide (FMN), the most effective ETM for Shewanella-MFC operation, exhibited the highest potential (0.547 V) and power density (20.28 mW/m2) and generated the maximum current (0.285 mA). The addition of conductive iron-bearing minerals (hematite: 26.27 mW/m2, lepidocrocite: 25.83 mW/m2) enhanced power density of FMN-MFC, while no significant enhancement was observed when soluble iron source (ferric citrate) was added. In addition, MFC containing hematite showed the maximum current (0.37 mA) with 30.8 % of coulombic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Logan, B. E. and J. M. Regan (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbial. 14: 512–518.

    Article  CAS  Google Scholar 

  2. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enz. Microb. Tech. 30: 145–152.

    Article  CAS  Google Scholar 

  3. Min, B., S. Cheng, and B. E. Logan (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39: 1675–1686.

    Article  CAS  Google Scholar 

  4. Liu, Z. D., J. Lian, Z. W. Du, and H. R. Li (2006) Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chin. J. Biotechnol. 22: 131–137.

    Article  Google Scholar 

  5. Liu, Z. D., Z. W. Du, J. Lian, X. Y. Zhu, S. H. Li, and H. R. Li (2007) Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Lett. Appl. Microbiol. 44: 393–398.

    Article  CAS  Google Scholar 

  6. Du, Z., H. Li, and T. Gu (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464–482.

    Article  CAS  Google Scholar 

  7. Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375–381.

    Article  CAS  Google Scholar 

  8. Kim, B. H., T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. Kano, K. Takagi, and H. Tatsumi (1999) Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13: 475–478.

    Article  CAS  Google Scholar 

  9. Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365–367.

    CAS  Google Scholar 

  10. Myers, C. R. and J. M. Myers (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429–3438.

    CAS  Google Scholar 

  11. El-Naggar, M. Y., G. Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam, J. Yang, W. M. Lau, K. H. Nealson, and Y. A. Gorby (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA. 107: 18127–18131.

    Article  CAS  Google Scholar 

  12. Wu, C. Y., L. Zhuang, S. G. Zhou, Y. Yuan, T. Yuan, and F. B. Li (2012) Humic substance-mediated reduction of iron (III) oxides and degradation of 2, 4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb. Biotechnol. 6: 141–149.

    Article  Google Scholar 

  13. Aeschbacher, M., D. Vergari, R. P. Schwarzenbach, and M. Sander (2011) Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45: 8385–8394.

    Article  CAS  Google Scholar 

  14. Sun, J., W. Li, Y. Li, Y. Hu, and Y. Zhang (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour. Technol. 142: 407–414.

    Article  CAS  Google Scholar 

  15. Park, D. and J. Zeikus (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biot. 59: 58–61.

    Article  CAS  Google Scholar 

  16. Ringeisen, B. R., E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, and J. M. Jones-Meehan (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40: 2629–2634.

    Article  CAS  Google Scholar 

  17. Feng, C., L. Ma, F. Li, H. Mai, X. Lang, and S. Fan (2010) A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens. Bioelectron. 25: 1516–1520.

    Article  CAS  Google Scholar 

  18. Bae, S. and W. Lee (2013) Biotransformation of lepidocrocite in the presence of quinones and flavins. Geochim. Cosmochim. Acta. 114: 144–155.

    Article  CAS  Google Scholar 

  19. Bae, S. and W. Lee (2014) Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environ. Sci. Technol. 48: 2368–2376.

    Article  CAS  Google Scholar 

  20. Bae, S., Y. Lee, M. J. Kwon, and W. Lee (2014) Riboflavinmediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite. J. Hazard. Mater. 274: 24–31.

    Article  CAS  Google Scholar 

  21. Marsili, E., D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA. 105: 3968–3973.

    Article  CAS  Google Scholar 

  22. Von Canstein, H., J. Ogawa, S. Shimizu, and J. R. Lloyd (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microb. 74: 615–623.

    Article  Google Scholar 

  23. Anderson, R. F. (1983) Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. BBA-Bioenergetics 722: 158–162.

    Article  CAS  Google Scholar 

  24. Heering, H. A. and W. R. Hagen (1996) Complex electrochemistry of flavodoxin at carbon-based electrodes: results from a combination of direct electron transfer, flavin-mediated electron transfer and comproportionation. J. Electroanal. Chem. 404: 249–260.

    Article  Google Scholar 

  25. Yamashita, M., S. S. Rosatto, and L. T. Kubota (2002) Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide. J. Brazil Chem. Soc. 13: 635–641.

    Article  CAS  Google Scholar 

  26. Garjonyte, R., A. Malinauskas, and L. Gorton (2003) Investigation of electrochemical properties of FMN and FAD adsorbed on titanium electrode. Bioelectrochemi. 61: 39–49.

    Article  CAS  Google Scholar 

  27. Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humicsreducing microorganisms. Environ. Sci. Technol. 32: 2984–2989.

    Article  CAS  Google Scholar 

  28. Nevin, K. P. and D. R Lovley (2002) Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19: 141–159.

    Article  CAS  Google Scholar 

  29. Pandit, S., S. Khilari, S. Roy, D. Pradhan, and D. Das (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered Microbial Fuel Cell: Effect of different anodic operating conditions. Bioresour. Technol. 166: 451–457.

    Article  CAS  Google Scholar 

  30. Mayhew, S. G. (1999) The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide. Eur. J. Biochem. 265: 698–702.

    Article  CAS  Google Scholar 

  31. Bird, L. J., V. Bonnefoy, and D. K. Newman (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19: 330–340.

    Article  CAS  Google Scholar 

  32. Kato, S., K. Hashimoto, and K. Watanabe (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA. 109: 10042–10046.

    Article  CAS  Google Scholar 

  33. Nakamura, R., F. Kai, A. Okamoto, G. J. Newton, and K. Hashimoto (2009) Self-constructed electrically conductive bacterial networks. Angew. Chem. Int. Edit. 48: 508–511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Bae, S., Moon, C. et al. Flavin mononucleotide mediated microbial fuel cell in the presence of Shewanella putrefaciens CN32 and iron-bearing mineral. Biotechnol Bioproc E 20, 894–900 (2015). https://doi.org/10.1007/s12257-015-0031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0031-2

Keywords

Navigation