Skip to main content
Log in

In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to estimate the CO2 absorptivity provided by an in situ carbon supply system using a photosynthetic culture of the cyanobacterium Spirulina platensis in an open raceway pond. The effects of initial total carbon concentrations (ranging from 0 to 0.1 mol/L), suspension depths (ranging from 5 to 20 cm) and pH values (ranging from 8.9 to 11.0) on the CO2 absorptivity were studied. The results indicated that CO2 absorptivity was positively correlated with pH value, negatively correlated with total carbon concentration, and only negligibly affected by the suspension depth. The optimum total carbon concentration range and pH range were 0.03 ∼ 0.09 mol/L and 9.7 ∼ 10.0, respectively. An average CO2 absorptivity of 86.16% and average CO2 utilization efficiency of 79.18% were achieved using this in situ carbon-supply system in large-scale cultivation of Spirulina platensis, with an initial total carbon concentration of 0.06 mol/L and pH value of 9.8. Our results demonstrated that this system could obtain a favorable CO2 utilization efficiency in outdoor, large-scale cultivation of Spirulina platensis in open raceway ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordillo, F. J. L., C. Jiménez, F. L. Figueroa, and F. X. Niell (1998) Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). J. Appl. Phycol. 10: 461–469.

    Article  Google Scholar 

  2. Qiang, H., H. Guterman, and A. Richmond (1996) Physiological characteristics of Spirulina plantensis (cyanobacteria) cultured at ultrahigh cell densities. J. Phycol. 32: 1066–1073.

    Article  Google Scholar 

  3. Soletto, D., L. Binaghi, L. Ferrari, A. Lodi, J. Carvalho, M. Zilli, and A. Converti (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem. Eng. J. 39: 369–375.

    Article  CAS  Google Scholar 

  4. Vonshak, A., L. Chanawongse, B. Bunnag, and M. Tanticharoen (1996a) Light acclimation and photoinhibition in three Spirulina plantensis (cyanobacteria) isolates. J. Appl. Phycol. 8: 35–40.

    Article  Google Scholar 

  5. Vonshak, A., N. Kancharaksa, B. Bunnag, and M. Tanticharoen (1996b) Role of light and photosynthesis on the acclimation process of the cyanobacterium spirulina platensis to salinity stress. J. Appl. Phycol. 8: 119–124.

    Article  Google Scholar 

  6. Becker, E. W. (1994) Microalgae biotechnology and microbiology. pp. 63–171. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  7. Richmond, A. and E. Becker (1986) Technological aspects of mass cultivation, a general outline. pp. 245–253. In: Richmond, A. (ed.) Handbook of microalgal mass culture. CRC Press Inc, Florida, USA.

    Google Scholar 

  8. Moazami, N., R. Ranjbar, A. Ashori, M. Tangestani, and A. Sheykhi Nejad (2011) Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenerg. 35: 1935–1939.

    Article  CAS  Google Scholar 

  9. Borowrrzka, M. A. (2005) Culturing microalgae in outdoor ponds. pp. 205–206. In: Andersen, R. A. (ed.) Algal culturing techniques. Academic Press, NY, USA.

    Chapter  Google Scholar 

  10. Jiménez, C., B. R. Cossío, and F. X. Niell (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture 221: 331–345.

    Article  Google Scholar 

  11. Morais, M. G. and J. A. V. Costa (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol. 129: 419–425.

    Google Scholar 

  12. Binaghi, L., A. D. Borghi, A. Lodi, A. Converti, and M. D. Borghi (2003) Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Proc. Biochem. 38: 1341–1346.

    Article  CAS  Google Scholar 

  13. Hase, R., H. Oikawa, C. Sasao, M. Morita, and Y. Watanabe (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse condition in Sendai city. J. Biosci. Bioeng. 89: 157–163.

    Article  CAS  Google Scholar 

  14. Cornet, J. F., C. G. Dussap, and J. B. Gros (1998) Kinetics and energetics of photosynthetic micro-organisms in photobioreactors: Application to Spirulina growth. Adv. Biochem. Eng. Biotechnol. 59: 155–224.

    Google Scholar 

  15. Cong, W., Z. F. Su, R. J. Kang, C. Y. Yang, and Z. L. Cai (2007) A carbon supply device for cultivating micro algae in large and its application method and use. CN200510126465.2/AU2006324198.

  16. Su, Z. F., R. J. Kang, S. Y Shi, W. Cong, and Z. L. Cai (2008) An economical device for carbon supplement in large-scale microalgae production. Bioproc. Biosyst. Eng. 31: 641–645.

    Article  CAS  Google Scholar 

  17. Vonshak, A. (1997) Outdoor mass production of Spirulina: The basic concept. pp. 79–99. In: Vonshak, A. (ed.) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor and Francis, London, UK.

    Google Scholar 

  18. Belkin, S. and S. Boussiba (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol. 32: 953–958.

    CAS  Google Scholar 

  19. Zarrouk, C. (1966) Contribution à l’étude d’une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. Thesi. University of Paris, Paris, France.

    Google Scholar 

  20. Cong, W., R. J. Kang, and Z. L. Cai (2004) A pH-based feedback method for carbon sources control in cultivation of microalgae. Patent of China CN200410009360.4.

  21. Fresenius, W., K. E. Quentin, and W. Schneider (1988) Water analysis: A practical guide to physico-chemical, chemical and microbiological water examination and quality assurance. pp. 247–251. Springer Verlag, Berlin, Heidelberg, Germany.

    Google Scholar 

  22. Xue, S. H., Z. F. Su, and W. Cong (2010) Growth of Spirulina platensis enhanced under intermittent illumination. J. Biotechnol. 151: 271–277.

    Article  Google Scholar 

  23. Lívansky, K. and J. Doucha (1997) Additional CO2 saturation of thin-layer outdoor microalgal cultures: CO2 mass transfer and absorption efficiency. Algological Studies 87: 145–154.

    Google Scholar 

  24. Ryu, H. J., K. K. Oh, and Y. S. Kim (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem. 15: 471–475.

    Article  CAS  Google Scholar 

  25. Livansky, K. (1982) Effect of temperature and pH on absorption of carbon dioxide by a free level of mixed solutions of some buffers. Folia Microbiol. 27: 55–59.

    Article  CAS  Google Scholar 

  26. Araujo, S. C. and V. M. T. Garcia (2005) Growth biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246: 405–412.

    Article  Google Scholar 

  27. Olaizola, M., E. O. Duerr, and D. W. Freeman (1991) Effect of CO2 enhancement in an outdoor algal production system using Tetraselmis sp. J. Appl. Phycol. 3: 363–366.

    CAS  Google Scholar 

  28. Chang, E. H. and S. S. Yang (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bull. Acad. Sin. 44: 43–52.

    CAS  Google Scholar 

  29. Rosa, A. P. C., L. F. Carvalho, L. Goldbeck, and J. A. V. Costa (2011) Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energ. Convers. Manage. 52: 3071–3073.

    Article  Google Scholar 

  30. Doucha, J. and K. Lívansky (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgae (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J. Appl. Phycolo. 18: 811–826.

    Article  CAS  Google Scholar 

  31. Soletto, D., L. Binaghi, L. Ferrari, A. Lodi, J. C. M. Carvalho, M. Zilli, and A. Converti (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem. Eng. J. 39: 369–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Y., Liu, M., Wu, X. et al. In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond. Biotechnol Bioproc E 17, 93–99 (2012). https://doi.org/10.1007/s12257-011-0319-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0319-9

Keywords

Navigation