Skip to main content
Log in

Phytoplankton Biomass and Composition in a River-Dominated Estuary During Two Summers of Contrasting River Discharge

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92 ± 3 %; n = 14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69 ± 3 %; n = 14) followed by <20 μm eukaryotes (19 ± 1 %; n = 14), and phycoerythrin containing cyanobacteria (4 ± 1 %; n = 14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu, P.C., M. Bergesch, L.A. Proença, C.A.E. Garcia, and C. Odebrecht. 2010. Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon Estuary, Southern Brazil. Estuaries and Coasts 33: 554–569.

    Article  CAS  Google Scholar 

  • Agawin, N.S.R., C.M. Duarte, and S. Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45: 591–600.

    Article  CAS  Google Scholar 

  • Allan, R.P. 2011. Human influence on rainfall. Nature 470: 344–345.

    Article  CAS  Google Scholar 

  • Allen, M.R., and W.J. Ingram. 2002. Constraints on future changes in climate and the hydrological cycle. Nature 419: 224–232.

    Article  CAS  Google Scholar 

  • Apple, J.K., E.M. Smith, and T.J. Boyd. 2008. Temperature, salinity, nutrients, and the covariation of bacterial production and chlorophyll in estuarine ecosystems. Journal of Coastal Research 55: 59–75.

    Article  CAS  Google Scholar 

  • Badylak, S., and E.J. Phlips. 2004. Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research 26: 1229–1247.

    Article  CAS  Google Scholar 

  • Badylak, S., E.J. Phlips, P. Baker, J. Fajans, and R. Boler. 2007. Distributions of phytoplankton in Tampa Bay estuary, U.S.A. 2002–2003. Bulletin of Marine Science 80: 295–317.

    Google Scholar 

  • Bec, B., Y. Collos, P. Souchu, A. Vaquer, J. Lautier, A. Fiandrino, L. Benau, V. Orsoni, and T. Laugier. 2011. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquatic Microbial Ecology 63: 29–45.

    Article  Google Scholar 

  • Biasutti, M., A.H. Sobel, S.J. Camargo, and T.T. Creyts. 2012. Projected changes in the physcial climate of the Gulf Coast and Caribbean. Climate Change 112: 819–845.

    Article  Google Scholar 

  • Bledsoe, E.L., and E.J. Phlips. 2000. Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee River and plume region, U.S.A. Estuaries 23: 458–473.

    Article  Google Scholar 

  • Booth, B., J. Lewin, and J.R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific. Progress in Oceanography 32: 57–99.

    Article  Google Scholar 

  • Bower, C.E., and T. Holm-Hansen. 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37: 794–798.

    Article  CAS  Google Scholar 

  • Boynton, W.R., W.M. Kemp, and C.W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In Estuarine Comparisons, ed. V.S. Kennedy, 69–90. New York: Academic Press.

    Chapter  Google Scholar 

  • Braman, R.S., and S.A. Hendrix. 1989. Nanogram nitrite and nitrate determination in environmental and biological-materials by vanadium(III) reduction with chemi-luminescence detection. Analytical Chemistry 61: 2715–2718.

    Article  CAS  Google Scholar 

  • Chanton, J., and F.G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, U.S.A. Limnology and Oceanography 47: 683–697.

    Article  Google Scholar 

  • Chauhan, A., J. Cherrier, and H.N. Williams. 2009. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proceedings of the National Academy of Science 106: 4301–4306.

    Article  CAS  Google Scholar 

  • Cloern, J.E., and R. Dufford. 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series 285: 11–28.

    Article  CAS  Google Scholar 

  • Collier, J.L. 2000. Flow cytometry and the single cell in phycology. Journal of Phycology 36: 628–644.

    Article  Google Scholar 

  • Collos, Y., B. Bec, C. Jauzein, E. Abadie, T. Laugier, J. Lautier, A. Pastoureaud, P. Souchu, and A. Vaquer. 2009. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. Journal of Sea Research 61: 68–75.

    Article  Google Scholar 

  • Cruise, J.F., A.S. Limaye, and N. Al-Abed. 1999. Assessment of impacts of climate change on water quality in the southeastern United States. Journal of American Water Resources Association 35: 1539–1550.

    Article  Google Scholar 

  • Donoghue, J.F. 2011. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change 107: 17–33.

    Article  Google Scholar 

  • Dulaiova, H., and W.C. Burnett. 2008. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry 109: 395–408.

    Article  CAS  Google Scholar 

  • Durack, P.J., S.E. Wijffels, and R.J. Matear. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336: 455–458.

    Article  CAS  Google Scholar 

  • Edmiston, H.L. 1979. The zooplankton of the Apalachicola Bay system. MS thesis: Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Edmiston, H.L. 2008. A river meets the bay: A characterization of the Apalachicola River and Bay system. Florida Department of Environmental Protection. Florida: Tallahassee.

    Google Scholar 

  • Edmiston, H.L., S.A. Fahrny, M.S. Lamb, L.K. Levi, J.M. Wanat, J.S. Avant, K. Wren, and N.C. Selly. 2008. Journal of Coastal Research 55: 38–49.

    Article  Google Scholar 

  • Eppley, R.W., J.N. Rogers, and J.J. McCarthy. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography 14: 912–920.

    Article  CAS  Google Scholar 

  • Fisher, T.R., L.W. Harding, D.W. Stanley, and L.G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuarine, Coastal and Shelf Science 27: 61–93.

    Article  CAS  Google Scholar 

  • Fisher, T.T., A.B. Gustafson, K.G. Sellner, R. Lacouture, L.W. Haas, R.L. Wetzel, R. Magnien, D. Everitt, B. Michaels, and R. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay. Marine Biology 133: 763–778.

    Article  Google Scholar 

  • Fulmer, J.M. 1997. Nutrient enrichment and nutrient input to Apalachicola Bay. Florida: MS Thesis, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Gaulke, A.K., M.S. Wetz, and H.W. Paerl. 2010. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuarine, Coastal and Shelf Science 90: 45–54.

    Article  CAS  Google Scholar 

  • Gibson, C.A., J.L. Meyer, N.L. Poff, L.E. Hay, and A. Georgakakos. 2005. Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Research and Applications 21: 849–864.

    Article  Google Scholar 

  • Gillanders, B.M., and M.J. Kingsford. 2002. Impact of changes in flow of freshwater on estuarine and open coastal waters and associated organisms. Oceanography and Marine Biology: An Anuual Review 40: 233–309.

    Google Scholar 

  • Hall, N.S., H.W. Paerl, B.L. Peierls, A.C. Whipple, and K.L. Rossignol. 2013. Effects of climatic variability on phytoplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine, Coastal and Shelf Science 117: 70–82.

    Article  Google Scholar 

  • Hobro, R., and E. Willen. 1977. Phytoplankton countings. Intercalibration results and recommendations for routine work. International Review of Hydrobiology 62: 805–811.

    Article  Google Scholar 

  • Hull, J.W. 2000. The War Over Water. Altanta: The Council of State Governments.

    Google Scholar 

  • Humborg, C. 1997. Primary productivity regime and nutrient removal in the Danube Estuary. Estuarine, Coastal and Shelf Science 45: 579–589.

    Article  Google Scholar 

  • Iriarte, A. 1993. Size-fractionated chlorophyll biomass and picophytoplankton cell density along a longitudinal axis of a temperate estuary (Southampton Water). Journal of Plankton Research 15: 485–500.

    Article  Google Scholar 

  • Iriarte, A., and D.A. Purdie. 1994. Size distribution of chlorophyll biomass and primary production in a temperate estuary (Southampton Water): the contribution of photosynthetic picoplankton. Marine Ecology Progress Series 115: 283–297.

    Article  CAS  Google Scholar 

  • Juhl, A.R., and M.C. Murrell. 2005. Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary. Aquatic Microbial Ecology 38: 147–156.

    Article  Google Scholar 

  • Keim, B.D., R. Fontenot, C. Tebaldi, and D. Shankman. 2011. Hydroclimatology of the U.S. Gulf Coast under global climate change scenarios. Physical Geography 32: 561–582.

    Article  Google Scholar 

  • Kromkamp, J., and J. Peene. 1995. Possibility of net phytoplankton primary production in the turbid Schelde Estuary (SW Netherlands). Marine Ecology Progress Series 121: 249–259.

    Article  Google Scholar 

  • Le Gall, S., M.B. Hassen, and P. Le Gall. 1997. Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension-feeders. Marine Ecology Progress Series 152: 301–306.

    Article  Google Scholar 

  • Livingston, R.J. 1984. The ecology of the Apalachicola Bay system: an estuarine profile. Washington: U.S. Fish and Wildlife Service, FWS/OBS 82/05.

  • Loneragan, N.R., and S.E. Bunn. 1999. River flows and estuarine ecosystems: implications for coastal fisheries from a review and a case study of the Logan River, southeast Queensland. Australian Journal of Ecology 24: 431–440.

    Article  Google Scholar 

  • Loret, P., S. Le Gall, C. Dupuy, J. Blanchot, A. Pastoureaud, B. Delesalle, X. Caisey, and G. Jonquières. 2000. Heterotrophic protists as a trophic link between picocyanobacteria and the pearl oyster Pinctada margaritifera in the Takapoto lagoon (Tuamotu Archipelago, French Polynesia). Aquatic Microbial Ecology 22: 215–226.

    Article  Google Scholar 

  • MacIsaac, E.A., and J.G. Stockner. 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In Handbook of Methods in Aquatic Microbial Ecology, ed. P.F. Kemp, 187–197. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Menden-Deuer, S., and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Montagnes, D.J.S., J.A. Berges, P.J. Harrison, and F.J.R. Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophyll from volume in marine phytoplankton. Limnology and Oceanography 39: 1044–1060.

    Article  CAS  Google Scholar 

  • Morey, S.L., D.S. Dukhovskoy, and M.A. Bourassa. 2009. Connectivity of the Apalachicola River flow variability and the physical and bio-optical oceanic properties of the northern West Florida Shelf. Continental Shelf Research 29: 1264–1275.

    Article  Google Scholar 

  • Mortazavi, B. 1998. Primary productivity and nitrogen cycling in Apalachicola Bay, FL. USA. Ph.D: Dissertation, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Mortazavi, B., R.L. Iverson, and W.R. Huang. 2001. Dissolved organic nitrogen and nitrate in Apalachicola Bay, Florida: spatial distributions and monthly budgets. Marine Ecology Progress Series 214: 79–91.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.M. Landing, and W.R. Huang. 2000a. Phosphorus budget of Apalachicola Bay: a river dominated estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 198: 33–42.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.R. Huang, F.G. Lewis, and J.M. Caffrey. 2000b. Nitrogen budget of Apalachicola Bay, a bar built estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 195: 1–14.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.M. Landing, F.G. Lewis, and W.R. Huang. 2000c. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA. Marine Ecology Progress Series 198: 19–31.

    Article  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural-waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Murrell, M.C., and J.M. Caffrey. 2005. High cyanobacterial abundances in three northeastern Gulf of Mexico estuaries. Gulf and Caribbean Research 17: 95–106.

    Article  Google Scholar 

  • Murrell, M.C., and E.M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. Journal of Plankton Research 26: 371–382.

    Article  Google Scholar 

  • Murrell, M.C., R.S. Stanley, E.M. Lores, G.T. DiDonato, and D.A. Flemer. 2002. Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries 25: 19–29.

    Article  Google Scholar 

  • Muylaert, K., K. Sabbe, and W. Vyverman. 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82: 335–340.

    Article  CAS  Google Scholar 

  • Ning, X., J.E. Cloern, and B.E. Cole. 2000. Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnology and Oceanography 45: 695–702.

    Article  CAS  Google Scholar 

  • Noss, R.F. 2011. Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise. Climatic Change 107: 1–16.

    Article  Google Scholar 

  • O’Donohue, M.J.H., and W.C. Dennison. 1997. Phytoplankton productivity response to nutrient concentrations, light availability, and temperature along an Australian estuarine gradient. Estuaries 20: 521–533.

    Article  Google Scholar 

  • Parsons, T.R., and M. Takahashi. 1973. Environmental control of phytoplankton cell size. Limnology and Oceanography 18: 511–515.

    Article  Google Scholar 

  • Paerl, H.A., L.M. Valdes, B.L. Peierls, J.E. Adolf, and L.W. Harding Jr. 2006. Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography 51: 448–462.

    Article  CAS  Google Scholar 

  • Paerl, H.W., L.M. Valdes-Weaver, A.R. Joyner, and V. Winkelmann. 2007. Phytoplankton indicators of ecological change in the eutrophying Pamlico Sound System, North Carolina. Ecological Applications 17(5): S88–S101.

    Article  Google Scholar 

  • Paerl, H.W., K.L. Rossignol, S.N. Hall, B.L. Peierls, and M.S. Wetz. 2010. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts 33: 485–497.

    Article  CAS  Google Scholar 

  • Peierls, B., N.S. Hall, and H.W. Paerl. 2012. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain North Carolina estuaries. Estuaries and Coasts 35: 1376–1392.

    Article  Google Scholar 

  • Pennock, J.R., and J.H. Sharp. 1994. Temporal alternation between light- and nutrient-limitation of phytoplankton production in a coastal plain estuary. Marine Ecology Progress Series 111: 275–288.

    Article  Google Scholar 

  • Petes, L.E., A.J. Brown, and C.R. Knight. 2012. Impacts of upstream drought and water withdrawals on the health and survival of downstream estuarine oyster populations. Ecology and Evolution 2: 1712–1724.

    Article  Google Scholar 

  • Phlips, E.J., S. Badylak, M.C. Christman, and M.A. Lasi. 2010. Climatic trends and temporal patterns of phytoplankton composition, abundance, and succession in the Indian River Lagoon, Florida, USA. Estuaries and Coasts 33: 498–512.

    Article  CAS  Google Scholar 

  • Postel, S., and B. Richter. 2003. Rivers for life. WA: Island Press.

    Google Scholar 

  • Putland, J.N. 2005. Ecology of phytoplankton, Acartia tonsa, and microzooplankton in Apalachicola Bay. Florida. Ph.D: Dissertation, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Putland, J.N., and R.L. Iverson. 2007a. Phytoplankton biomass in a subtropical estuary: distribution, size composition, and carbon:chlorophyll ratios. Estuaries and Coasts 30: 879–886.

    Article  Google Scholar 

  • Putland, J.N., and R.L. Iverson. 2007b. Ecology of Acartia tonsa in Apalachicola Bay, Florida and implications of river water diversion. Marine Ecology Progress Series 340: 173–187.

  • Putland, J.N., and R.L. Iverson. 2007c. Microzooplankton: major herbivores in an estuarine planktonic food web. Marine Ecology Progress Series 345: 63–73.

    Article  CAS  Google Scholar 

  • Putland, J.N., and R.B. Rivkin. 1999. Influence of storage mode and duration on the microscopic enumeration of Synechococcus from a cold coastal ocean environment. Aquatic Microbial Ecology 17: 191–199.

    Article  Google Scholar 

  • Putland, J.N., and T. Sutton. 2010. Microzooplankton grazing and productivity in the central and southern sector of Indian River Lagoon, Florida. Florida Scientist 73: 236–246.

    CAS  Google Scholar 

  • Putland, J.N., B. Mortazavi, and R.L. Iverson. 2009. Changes in phytoplankton and bacterioplankton biomass and rate processes in Apalachicola Bay, Florida in response to reduction in river discharge. Gulf of Mexico Science 27: 109–122.

    Google Scholar 

  • Qian, Y., A.E. Jochens, M.C. Kennicutt II, and D.C. Biggs. 2003. Spatial and temporal variability of phytoplankton biomass and community structure over the continental margin of the northeastern Gulf of Mexico based on pigment analysis. Continental Shelf Research 23: 1–17.

    Article  Google Scholar 

  • Quinlan, E.L., and E.J. Phlips. 2007. Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary. Journal of Plankton Research 29: 401–416.

    Article  CAS  Google Scholar 

  • Rask, N., S.E. Pedersen, and M.H. Jensen. 1999. Response to lowered nutrient discharges in the coastal waters around the island of Funen, Denmark. Hydrobiologia 393: 69–81.

    Article  CAS  Google Scholar 

  • Ray, R.T., L.W. Haas, and M.E. Sieracki. 1989. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Marine Ecology Progress Series 52: 273–285.

    Article  Google Scholar 

  • Riegman, R., B.R. Kuipers, A.A.M. Noordeloos, and H.J. Witte. 1993. Size-differential control of phytoplankton and the structure of plankton communities. Netherlands Journal of Sea Research 31: 255–265.

    Article  Google Scholar 

  • Robineau, B., L. Legendre, C. Michel, G. Budeus, G. Kattner, W. Schneider, and S. Pesant. 1999. Ultraphytoplankton abundances and chlorophyll concentrations in ice-covered waters of northern seas. Journal of Plankton Research 21: 735–755.

    Article  Google Scholar 

  • Ruhl, J.B. 2005. Water wars, eastern style: divvying up the Apalachicola-Chattahoochee-Flint River Basin. Journal of Contemporary Water Research and Education 131: 47–54.

    Article  Google Scholar 

  • Ruiz, A., J. Franco, and F. Villate. 1998. Microzooplankton grazing in the estuary of Mundaka, Spain, and its impact on phytoplankton distribution along the salinity gradient. Aquatic Microbial Ecology 14: 281–288.

    Article  Google Scholar 

  • Sarthou, G., K.R. Timmermans, S. Blain, and P. Tréguer. 2005. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research 53: 25–42.

    Article  CAS  Google Scholar 

  • Scavia, D., J.C. Field, D.F. Boesch, R.W. Buddemeier, V. Burkett, D.R. Cayan, M. Fogarty, M.A. Harwell, R.W. Howarth, C. Mason, D.J. Reed, T.C. Royer, A.H. Sallenger, and J.G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–164.

    Article  Google Scholar 

  • Sin, Y., R.L. Wetzel, and I.C. Anderson. 1999. Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: Analyses of long-term data. Estuaries 22: 260–275.

    Article  Google Scholar 

  • Sin, Y., R.L. Wetzel, and I.C. Anderson. 2000. Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research 22: 1945–1960.

    Article  Google Scholar 

  • Tamigneaux, E., E. Vazquez, M. Mingelbier, B. Klein, and L. Legendre. 1995. Environmental control of phytoplankton assemblages in nearshore marine waters, with special emphasis on phototrophic ultraplankton. Journal of Plankton Research 17: 1421–1447.

    Article  Google Scholar 

  • Turner, R.E., N.N. Rabalais, and Z.Z. Nan. 1990. Phytoplankton biomass, production and growth limitations on the Huanghe (Yellow River) continental shelf. Continental Shelf Research 10: 545–571.

    Article  Google Scholar 

  • USGCRP. 2009. Southeast, p. 111–116. In T.R. Karl, J.M. Melillo, and T.C. Peterson (eds.), Global climate change impacts in the United States. Cambridge University Press. New York.

  • U.S. Census Bureau. 2011. Population distribution and change: 2000–2010. www.census.gov/prod/cen2010/briefs/c2010br-01.pdf

  • Vaquer, A., M. Troussellier, C. Courties, and B. Bibent. 1996. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnology and Oceanography 41: 1821–1828.

    Article  Google Scholar 

  • Wang, H., W. Huang, M.A. Harwell, L. Edmiston, E. Johnson, P. Hsieh, K. Milla, J. Christensen, J. Stewart, and X. Liu. 2008. Modeling oyster growth rate by coupling oyster population and hydrodynamic models for Apalachicola Bay, Florida, USA. Ecological Modelling 211: 77–89.

    Article  Google Scholar 

  • Welschmeyer, N. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    Article  CAS  Google Scholar 

  • Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears. 2007. How much more rain will global warming bring? Science 317: 233–235.

    Article  CAS  Google Scholar 

  • Wetz, M.S., and H.W. Paerl. 2008. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (Trajectory, Rainfall, Winds). Estuaries and Coasts 31: 419–429.

    Article  CAS  Google Scholar 

  • Wetz, M.S., H.W. Paerl, C.J. Taylor, and J.A. Leonard. 2011a. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquatic Microbial Ecology 63: 133–143.

    Article  Google Scholar 

  • Wetz, M.S., E.A. Hutchinson, R.S. Lunetta, and H.W. Paerl. 2011b. Severe droughts reduce estuarine primary productivity with cascading effects on higher trophic levels. Limnology and Oceanography 56(2): 627–638.

    Article  CAS  Google Scholar 

  • Wetzel, R.L., and G.E. Likens. 1991. Composition and Biomass of Phytoplankton, Limnological Analysis, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Wilson, R.M., J. Chanton, F.G. Lewis, and D. Nowacek. 2010. Concentration-dependent stable isotope analysis of consumers in the upper reaches of a freshwater-dominated estuary: Apalachicola Bay, FL, USA. Estuaries and Coasts 33: 1406–1419.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible in part with a Graduate Research Fellowship award to J.N.P. from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration and in part by a grant from the British Petroleum, Inc./Florida Institute of Oceanography Gulf Oil Spill Prevention, Response and Recovery Program continued as via the Deep-C Consortium. Salinity data for Cat Point and Dry Bar was kindly provided by the National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management, National Estuarine Research Reserve System—Wide Monitoring Program. The authors thank the Department of Biology, Florida State University for use of their epifluorescence microscope, the staff at the Apalachicola Bay National Estuarine Research Reserve for providing assistance with sampling, and to Brian Dzwonkowski for kindly generating Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Putland.

Additional information

Communicated by: Hans W. Paerl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putland, J.N., Mortazavi, B., Iverson, R.L. et al. Phytoplankton Biomass and Composition in a River-Dominated Estuary During Two Summers of Contrasting River Discharge. Estuaries and Coasts 37, 664–679 (2014). https://doi.org/10.1007/s12237-013-9712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9712-2

Keywords

Navigation