Skip to main content
Log in

Food Web Structure in a Chesapeake Bay Eelgrass Bed as Determined through Gut Contents and 13C and 15N Isotope Analysis

  • Note
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Changes in seagrass food-web structure can shift the competitive balance between seagrass and algae, and may alter the flow of energy from lower trophic levels to commercially important fish and crustaceans. Yet, trophic relationships in many seagrass systems remain poorly resolved. We estimated the food web linkages among small predators, invertebrate mesograzers, and primary producers in a Chesapeake Bay eelgrass (Zostera marina) bed by analyzing gut contents and stable C and N isotope ratios. Though trophic levels were relatively distinct, predators varied in the proportion of mesograzers consumed relative to alternative prey, and some mesograzers consumed macrophytes or exhibited intra-guild predation in addition to feeding on periphyton and detritus. These findings corroborate conclusions from lab and mesocosm studies that the ecological impacts of mesograzers vary widely among species, and they emphasize the need for taxonomic resolution and ecological information within seagrass epifaunal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bobsien, I.C. 2006. The role of small fish species in eelgrass food webs of the Baltic Sea. Dissertation, Christian-Albrechts-Universität zu Kiel, Germany

  • Canuel, E.A., J.E. Cloern, D.B. Ringelberg, J.B. Guckert, and G.H. Rau. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnology and Oceanography 40: 67–81.

    Article  CAS  Google Scholar 

  • Cardinale, B.J., D.S. Srivastava, J.E. Duffy, J.P. Wright, A.L. Downing, M. Sankaran, and C. Jouseau. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989–992.

    Article  CAS  Google Scholar 

  • Cerco, C.F., and K. Moore. 2001. System-wide submerged aquatic vegetation model for Chesapeake Bay. Estuaries 24: 522–531.

    Article  Google Scholar 

  • Chanton, J.P., and F.G. Lewis. 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22: 575–583.

    Article  CAS  Google Scholar 

  • Douglass, J.G., J.E. Duffy, A.C. Spivak, and J.P. Richardson. 2007. Nutrient versus consumer control of community structure in a Chesapeake Bay eelgrass habitat. Marine Ecology Progress Series 348: 71–83.

    Article  CAS  Google Scholar 

  • Douglass, J.G., J.E. Duffy, and J.E. Bruno. 2008. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community. Ecology Letters 11: 598–608.

    Article  Google Scholar 

  • Douglass, J.G., K.E. France, J.P. Richardson, and J.E. Duffy. 2010. Seasonal and interannual change in a Chesapeake Bay eelgrass community: insights into biotic and abiotic control of community structure. Limnology and Oceanography 55: 1499–1520.

    Article  CAS  Google Scholar 

  • Duffy, J.E. 2002. Biodiversity and ecosystem function: the consumer connection. Oikos 99: 201–219.

    Article  Google Scholar 

  • Duffy, J.E., and M.E. Hay. 2000. Strong impacts of grazing amphipods on the organization of a benthic community. Ecological Monographs 70: 237–263.

    Article  Google Scholar 

  • Duffy, J.E., and A.M. Harvilicz. 2001. Species-specific impacts of grazing amphipods in an eelgrass bed community. Marine Ecology Progress Series 223: 201–211.

    Article  Google Scholar 

  • Duffy, J.E., J.P. Richardson, and K.E. France. 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8: 301–309.

    Article  Google Scholar 

  • Eriksson, B.S., L. Ljunggren, A. Sandström, G. Johansson, J. Mattila, A. Rubach, S. Råeberg, and M. Snickars. 2009. Declines in predatory fish promote bloom-forming macroalgae. Ecological Applications 19: 1975–1988.

    Article  Google Scholar 

  • Fry, B. 2006. Stable isotope ecology. New York: Springer.

    Book  Google Scholar 

  • Haahtela, I. 1984. A hypothesis of the decline of the bladder wrack (Fucus vesiculosus L.) in SW Finland in 1975–1981. Limnologica 15: 345–350.

    Google Scholar 

  • Hines, A.H., A.M. Haddon, and L.A. Wiechert. 1990. Guild structure and foraging impact of blue crabs and epibenthic fish in a subestuary of Chesapeake Bay. Marine Ecology Progress Series 67: 105–126.

    Article  Google Scholar 

  • Hughes, A.R., K.J. Bando, L.F. Rodriguez, and S.L. Williams. 2004. Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Marine Ecology Progress Series 282: 87–99.

    Article  Google Scholar 

  • Jaschinski, S., N. Aberle, S. Gohse-Reiman, H. Brendelberger, K.H. Wiltshire, and U. Sommer. 2009. Grazer-diversity effects in an eelgrass–epiphyte microphytobenthos system. Oecologia 159: 607–615.

    Article  Google Scholar 

  • Jernakoff, P., A. Brearly, and J. Nielsen. 1996. Factors affecting grazer–epiphyte interactions in temperate seagrass meadows. Oceanography and Marine Biology: An Annual Review 34: 109–162.

    Google Scholar 

  • Kangas, P., H. Autio, G. Haellfors, H. Luther, A. Niemi, and H. Salemaa. 1982. A general model of the decline of Fucus vesiculosus at Tvaerminne, south coast of Finland in 1977–81. Acta Botanica Fennica 118: 1–27.

    Google Scholar 

  • Kirkman, H. 1978. Growing Zostera capricorni Aschers. in tanks. Aquatic Botany 4: 367–372.

    Article  Google Scholar 

  • Kitting, C.L. 1984. Selectivity by dense populations of small invertebrates foraging among seagrass blade surfaces. Estuaries 7: 276–288.

    Article  Google Scholar 

  • Lipcius, R.N., and W.T. Stockhausen. 2002. Concurrent decline of the spawning stock, recruitment, larval abundance, and size of the blue crab Callinectes sapidus in Chesapeake Bay. Marine Ecology Progress Series 226: 45–61.

    Article  Google Scholar 

  • Mansour, R.A. (1992). Foraging ecology of the blue crab, Callinectes sapidus Rathbun in lower Chesapeake Bay. Dissertation, Virginia Institute of Marine Science, College of William and Mary, Virginia

  • Nelson, W.G. 1979. Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. Journal of Experimental Marine Biology and Ecology 38: 225–245.

    Article  Google Scholar 

  • Nelson, W.G. 1980. A comparative study of amphipods in seagrasses from Florida to Nova Scotia. Bulletin of Marine Science 30: 80–89.

    Google Scholar 

  • Orth, R.J., K.L. Heck Jr., and J. van Montfrans. 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics in predator–prey relationships. Estuaries 7: 339–350.

    Article  Google Scholar 

  • Perkins-Visser, E., T.G. Wolcott, and D.L. Wolcott. 1996. Nursery role of seagrass beds: enhanced growth of juvenile blue crabs (Callinectes sapidus Rathbun). Journal of Experimental Marine Biology and Ecology 198: 155–173.

    Article  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D.L. 2001. Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127: 166–170.

    Article  Google Scholar 

  • Phillips, D.L., and G.W. Gregg. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

    Article  Google Scholar 

  • Short, F.T., D.M. Burdick, and J.E. Kaldy. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography 40: 740–749.

    Article  Google Scholar 

  • Stoner, A.W., and B.A. Buchanan. 1990. Ontogeny and overlap in the diets of four tropical Callinectes species. Bulletin of Marine Science 46: 3–12.

    Google Scholar 

  • Tagatz, M.E. 1968. Biology of the blue crab, Callinectes sapidus Rathbun, in the St. Johns River, Florida. Fisheries Bulletin 67: 17–33.

    Google Scholar 

  • Teixeira, R.L., and J.A. Musick JA. 1994. Trophic ecology of two congeneric pipefishes (Syngnathidae) of the lower York River, Virginia. Environmental Biology of Fishes 43: 295–309.

    Article  Google Scholar 

  • Thayer, G.W., P.L. Parker, M.W. LaCroix, and B. Fry. 1978. The stable carbon isotope ratio of some components of an eelgrass, Zostera marina, bed. Oecologia 35: 1–12.

    Article  Google Scholar 

  • Valentine, J.F., and J.E. Duffy. 2006. The central role of grazing in seagrass ecology. In Seagrasses: biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 463–501. Dordrecht: Springer.

    Chapter  Google Scholar 

  • van Montfrans, J., R.L. Wetzel, and R.J. Orth. 1984. Epiphyte–grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7: 289–309.

    Article  Google Scholar 

  • Virnstein, R.W. 1978. Predator caging experiments in soft sediments: caution advised. In Estuarine interactions, ed. M.L. Wiley, 261–273. New York: Academic.

    Google Scholar 

  • Wetzel, R.L., and H.A. Neckles. 1986. A model of Zostera marina L. photosynthesis and growth: simulated effects of selected physical–chemical variables and biological interactions. Aquatic Botany 26: 307–323.

    Article  Google Scholar 

  • Williams, S.W., and K.L. Heck Jr. 2001. Seagrass communities. In Marine community ecology, ed. M. Bertness, S. Gaines, and M. Hay, 317–337. Sunderland: Sinauer.

    Google Scholar 

  • Zimmerman, R., R. Gibson, and J. Harrington. 1979. Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Marine Biology 54: 41–47.

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Paul Richardson, Rachael E. Blake, Romuald Lipcius, Paul Gerdes, and others for help and advice with field and lab work, and we thank David Harris and the staff of the UC Davis Stable Isotope Facility for invaluable sample processing services. This work was supported by grant #XXXXXX to J.E. Duffy. This is VIMS contribution #XXXX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Douglass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglass, J.G., Emmett Duffy, J. & Canuel, E.A. Food Web Structure in a Chesapeake Bay Eelgrass Bed as Determined through Gut Contents and 13C and 15N Isotope Analysis. Estuaries and Coasts 34, 701–711 (2011). https://doi.org/10.1007/s12237-010-9356-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-010-9356-4

Keywords

Navigation