Skip to main content

Advertisement

Log in

Application of the Ancient Forest Concept to Potential Natural Vegetation Mapping in Flanders, A Strongly Altered Landscape in Northern Belgium

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Construction of potential natural vegetation (PNV) poses particular challenges in landscapes heavily altered by human activity and must be based on transparent, repeatable methods. We integrated the concept of ancient forest (AF) and ancient forest species (AFS) into a four-step procedure of PNV mapping: 1) classification of forest vegetation relevés; 2) selection of those vegetation types that can serve as PNV units, based on AF and AFS; 3) merging of selected vegetation types into five PNV units that can be predicted from a digital morphogenetic soil map; 4) mapping of three additional PNV units based on additional environmental data. The second step, concerning the selection of reference forest vegetation, is of particular interest for PNV construction in Flanders (northern Belgium), where forest cover has been subject to temporal disruption and spatial fragmentation. Among the variety of extant forest recovery states, we chose as PNV units those vegetation types for which a high proportion of relevés had been located in AF and that contained many AFS. As the frequency of AFS depends on site conditions, we only compared and selected vegetation types that are found on similar sites according to average Ellenberg indicator values. While succession is irrelevant for the definition of PNV, colonization rates of AFS can be used to estimate the time required for PNV to be restored in a site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AGIV (2006) Agency for Geographical Information of Flanders. Distribution center for GIS thematic layers, Ghent. Available at: http://www.agiv.be

  • Baeten L, Bauwens B, De Schrijver A, De Keersmaeker L, Van Calster H, Vandekerkhove K, Roelandt B, Beeckman H, Verheyen K (2009a) Herb layer changes (1954–2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl Veg Sci 12:187–197

    Article  Google Scholar 

  • Baeten L, Hermy M, Verheyen K (2009b) Environmental limitation contributes to the differential colonization capacity of two forest herbs. J Veg Sci 20:209–223

    Article  Google Scholar 

  • Baeten L, Hermy M, Van Daele S, Verheyen K (2010) Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J Ecol 98:1447–1453

    Article  Google Scholar 

  • Becker M (1979) Influence du traitement sylvicole sur la flore forestiere: Cas de la futaie et du taillis-sous-futaie. Vegetatio 40:155–161

    Google Scholar 

  • Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Raus Th, Schlüter H, Weber H (2003) Map of the Natural Vegetation of Europe (Scale 1 : 2 500 000). Landwirtschaftsverlag, Münster

    Google Scholar 

  • Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient-recent forest ecotones in central Belgium. J Ecol 87:628–638

    Article  Google Scholar 

  • Brahy V, Deckers J, Delvaux B (2000) Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol-Cambisol on loess under deciduous forest in Belgium. Eur J Soil Sci 51:1–13

    Article  CAS  Google Scholar 

  • Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438

    Article  Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508

    Article  Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268

    Article  Google Scholar 

  • Carrión JS (2010) The concepts of potential natural vegetation (PNV) and other abstractions (trying to pick up fish with wet hands). J Biogeogr 37:2213–2215

    Article  Google Scholar 

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178

    Article  Google Scholar 

  • Cornelis J, Hermy M, Roelandt B, De Keersmaeker L, Vandekerkhove K (2009) Bosplantengemeenschappen in Vlaanderen, een typologie van bossen gebaseerd op de kruidlaag (Herbaceous forest vegetation communities of Flanders). Agentschap voor Natuur en Bos en Instituut voor Natuur- en Bosonderzoek, Brussels

    Google Scholar 

  • Cross JR (1998) An outline and map of the Potential Natural Vegetation of Ireland. Appl Veg Sci 1:241–252

    Article  Google Scholar 

  • Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, De Foucault B, Delelis-Dusollier A, Bardat F (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079

    Article  Google Scholar 

  • De Keersmaeker L, Rogiers N, Lauriks R, De Vos B (2001) Ecosysteemvisie bos Vlaanderen: ruimtelijke uitwerking van de natuurlijke bostypes op basis van bodemgroeperingseenheden en historische boskaarten (Ecosystem vision for the forest of Flanders based on PNVs and historical forest cover). Instituut voor Bosbouw en Wildbeheer, Geraardsbergen

    Google Scholar 

  • De Keersmaeker L, Martens L, Verheyen K, Hermy M, De Schrijver A, Lust N (2004) Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen Forest (Belgium). Forest Ecol Managem 188:291–304

    Article  Google Scholar 

  • De Keersmaeker L, Vandekerkhove K, Verstraeten A, Baeten L, Verschelde P, Thomaes A, Hermy M, Verheyen K (2011) Clear-felling effects on colonization rates of shadetolerant forest herbs into a post-agricultural forest adjacent to ancient forest. Appl Veg Sci 14:75–83

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4: 493–506

    Article  Google Scholar 

  • Döring-Mederake U (1990) Alnion Forests in Lower Saxony (FRG), their ecological requirements, classification and position within Carici Elongatae-Alnetum of Northern Central Europe. Vegetatio 89:107–119

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Falkengren-Grerup U, Tyler G (1993) Experimental evidence for the relative sensitivity of deciduous forest plants to high forest acidity. Forest Ecol Managem 60:311–326

    Google Scholar 

  • Farris E, Filibeck G, Marignani M, Rosati L (2010) The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión and Fernández (2009). J Biogeogr 37:2211–2213

    Article  Google Scholar 

  • Ferrier S, Guisan A (2006) Spatial modeling of biodiversity at the community level. J Appl Ecol 43:393–404

    Article  Google Scholar 

  • Flemish Government, section Water and section Hydraulics Research (2001–2004) Digital terrain model of Flanders. Flemish Geographical Information Agency (FGIA), Ghent

  • Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Frontier Ecol Environm 3:243–250

    Article  Google Scholar 

  • Härdtle W (1995) On the theoretical concept of the Potential Natural Vegetation and proposals for an up-to-date modification. Folia Geobot Phytotax 30:263–276

    Article  Google Scholar 

  • Hermy M (1985) Ecologie en fytosociologie van oude en jonge bossen in Binnen-Vlaanderen (Ecological and phytosociological study of ancient and recent forests in Flanders). PhD Thesis, Ghent University, Ghent

  • Hermy M, Stieperaere H (1981) An indirect gradient analysis of the ecological relationships between ancient and recent riverine woodlands to the south of Bruges (Flanders, Belgium). Vegetatio 44:43–49

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conservation 91:9–22

    Article  Google Scholar 

  • Hill MO (1979) TWINSPANa FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, New York

    Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World soil resources report 103, FAO, Rome

  • Jensen JR (1996) Introductory digital image processing: A remote sensing perspective. Ed. 2. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358

    Article  Google Scholar 

  • Kohn DD, Hulmea PE, Hollingsworth PM, Butler A (2009) Are native bluebells (Hyacinthoides non-scripta) at risk from alien congenerics? Evidence from distributions and co-occurrence in Scotland. Biol Conservation 142:61–74

    Article  Google Scholar 

  • Kopecký K, Hejný S (1974) A new approach to the classification of anthropogenic plant communities. Vegetatio 29:17–20

    Article  Google Scholar 

  • Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7:53–67

    Google Scholar 

  • Leuschner C (1997) Das Konzept der potentiellen natürlichen Vegetation (PNV): Schwachstellen und Entwicklungsperspektiven. Flora 192:379–391

    Google Scholar 

  • Liu HM, Wang LX, Yang J, Nakagoshi N, Liang CZ, Wang W, Lv YM (2009) Predictive modeling of the potential natural vegetation pattern in northeast China. Ecol Res 24:1313–1321

    Article  Google Scholar 

  • Loidi J, del Arco M, Pérez de Paz PL, Asensi A, Díez Garretas B, Costa M, Díaz González T, Fernández-González F, Izco J, Penas A, Rivas-Martínez S, Sánchez-Mata1 D (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37:2209–2211

    Article  Google Scholar 

  • Matlack GR (1994) Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75:1491–1502

    Article  Google Scholar 

  • Matlack GR (2009) Long-term changes in soils of second-growth forest following abandonment from agriculture. J Biogeogr 36:2066–2075

    Article  Google Scholar 

  • Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping. Appl Veg Sci 1:173–176

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (2002) Aims and methods of vegetation ecology. The Blackburn Press, Caldwell, New Jersey

    Google Scholar 

  • Muys B, Granval P (1997) Earthworms as bio-indicators of forest site quality. Soil Biol Biochem 29:323–328

    Article  CAS  Google Scholar 

  • Neirynck J, Mirtcheva S, Sioen G, Lust N (2000) Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecol Managem 133:275–286

    Article  Google Scholar 

  • Noirfalise A (1984) Forêts et stations forestières en Belgique. Les Presses Agronomiques de Gembloux, Gembloux

    Google Scholar 

  • Peterken GF (1974) A method for assessing woodland flora for conservation using indicator species. Biol Conservation 6:239–245

    Article  Google Scholar 

  • Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Plue J, Hermy M, Verheyen K, Thuillier P, Saguez R, Decocq G (2008) Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landscape Ecol 23:673–688

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/

  • Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Arnold, London

    Google Scholar 

  • Ricotta C, Carranza ML, Avena G, Blasi C (2002) Are potential natural vegetation maps a meaningful alternative to neutral landscape models? Appl Veg Sci 5:271–275

    Article  Google Scholar 

  • Rogister JE (1978) De groeiplaatskwaliteiten voor Es (Fraxinus excelsior) en Beuk (Fagus sylvatica) in funktie van de berekende ekologische gemiddelden van bodemaciditeit, -vochtigheid en -nitrifikatie (with english summary) (Calculation of site conditions for ash and beech, based on ecograms with indicator values). Werken, Reeks A 21, 28, Proefstation van Waters en Bossen, Groenendaal

  • Somodi I, Molnár Z, Ewald J (2012) Towards a more transparent use of the potential natural vegetation concept – an answer to Chiaruccu et al. J Veg Sci 23:590–595

    Article  Google Scholar 

  • Stumpel AHP, Kalkhoven JTR (1978) A vegetation map of the Netherlands, based on the relationship between ecotopes and types of potential natural vegetation. Vegetatio 37:163–173

    Article  Google Scholar 

  • Tack G, van den Bremt P, Hermy M (1993) Bossen van Vlaanderen: een historische ecologie (Forests of Flanders: an historical-ecological study). Davidsfonds, Leuven

    Google Scholar 

  • Thomaes A, De Keersmaeker L, De Schrijver A, Vandekerkhove K, Verschelde P, Verheyen K (2011) Can tree species choice influence recruitment of ancient forest species in post-agricultural forest? Pl Ecol 212: 573–584

    Article  Google Scholar 

  • Tichý L (1999) Predictive modeling of the potential natural vegetation pattern in the Podyjí National Park, Czech Republic. Folia Geobot 34:243–252

    Article  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1993) Flora Europaea. Vols. 1–5. Cambridge University Press, Cambridge

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol (Stolzenau) 13:5–42

    Google Scholar 

  • Vaca RA, Golicher DJ, Cayuela L (2011) Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Appl Veg Sci 14:388–401

    Article  Google Scholar 

  • Van Braeckel A, Piesschaert F, Van den Bergh E (2006) Historische analyse van de Zeeschelde en haar getijgebonden zijrivieren. 19e eeuw tot heden (An historical analysis of the Scheldt and its tributaries in the tidal area). Instituut voor Natuur- en Bosonderzoek, Brussel

    Google Scholar 

  • Van Calster H, Baeten L, Verheyen K, De Keersmaeker L, Dekeyser S, Rogister JE, Hermy M (2008) Diverging effects of different overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecol Managem 256:519–528

    Article  Google Scholar 

  • Van der Veken S, Rogister J, Verheyen K, Hermy M, Nathan R (2007) Over the (range) edge: A 45-year transplant experiment with the perennial forest herb Hyacinthoides non-scripta. J Ecol 95: 343–351

    Article  Google Scholar 

  • Van Landuyt W, Hoste I, Vanhecke L, Van Den Bremt P, Vercruysse W, de Beer D (2006) Atlas van de flora van Vlaanderen en het Brussels Gewest (Atlas of the flora of Flanders and Brussels). Flo.Wer, Research Institute for Nature and National Botanic Garden of Belgium, Brussels

    Google Scholar 

  • Verheyen K, Hermy M (2001) An integrated analysis of the spatio-temporal colonization patterns of forest plant species. J Veg Sci 12:567–578

    Article  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278–1990) of a mixed hardwood forest in Western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128

    Article  Google Scholar 

  • Verheyen K, Fastenaekels I, Vellend M, De Keersmaeker L, Hermy M (2006) Landscape factors and regional differences in recovery rates of herb layer richness in Flanders (Belgium). Landscape Ecol 21:1109–1118

    Article  Google Scholar 

  • Wang H, Ni J, Prentice IC (2011) Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environm Change 11:715–727

    Article  Google Scholar 

  • Wilson BR, Moffat AJ, Nortcliff S (1997) The nature of three ancient woodland soils in southern England. J Biogeogr 24:633–646

    Article  Google Scholar 

  • Wolf RJAM, Vrielinck JG, De Waal RL (1997) Riverine woodlands in the Netherlands. Global Ecol Biogeogr 6:287–295

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: An introduction with R. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Roy Stat Soc B 73:3–36

    Article  Google Scholar 

  • Wulf M (1997) Plant species as indicators of ancient woodland in Northwestern Germany. J Veg Sci 8:635–642

    Article  Google Scholar 

  • Zampieri M, Lionello P (2010) Simple statistical approach for computing land cover types and potential natural vegetation. Climate Res 41: 205–220

    Article  Google Scholar 

  • Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Guillaume Decocq, Jörg Ewald, and three anonymous reviewers for improving earlier versions of the manuscript. Marc Esprit assisted with GIS operations, and Alexander Van Braeckel supplied the tidal data to delineate the potential area of freshwater tides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc De Keersmaeker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Keersmaeker, L., Rogiers, N., Vandekerkhove, K. et al. Application of the Ancient Forest Concept to Potential Natural Vegetation Mapping in Flanders, A Strongly Altered Landscape in Northern Belgium. Folia Geobot 48, 137–162 (2013). https://doi.org/10.1007/s12224-012-9135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-012-9135-z

Keywords

Navigation