Skip to main content
Log in

Oxidative stress in cystic fibrosis patients with Burkholderia cenocepacia airway colonization: relation of 8-isoprostane concentration in exhaled breath condensate to lung function decline

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The association between oxidative stress and neutrophilic inflammation in cystic fibrosis (CF) lung disease is well recognized. 8-Isoprostane is a product of non-enzymatic oxidation of arachidonic acid. The aim of the present study was to examine the relationship between lung function decline and 8-isoprostane concentrations in exhaled breath condensate (EBC) in CF patients with Burkholderia cenocepacia airway colonization. Concentrations of 8-isoprostane in EBC were measured in 24 stable CF patients with B. cenocepacia airway colonization. The median (interquartile range) age of the cohort was 23.9 (22.0; 26.6) years. All patients underwent clinical examinations and pulmonary function tests at the time of EBC collection and in 1-, 3-, and 5-year intervals. 8-Isoprostane concentrations in EBC correlated to 1- and 3-year declines of forced expiratory volume in 1 s (FEV1) with r S values of −0.511 (p = 0.0011) and −0.495 (p = 0.016), respectively. In multiple regression analysis, 8-isoprostane concentrations in EBC were the only independent predictor for 1-year FEV1 decline (p = 0.01). When the median value of 8-isoprostane concentration in EBC (10.0 pg/mL) was used as a cutoff, subgroups of patients with lower and higher level of oxidative stress had significantly different median (interquartile range) FEV1 declines in 1-year interval, −2.4 % (−5.3; 0.8) and −7.3 % (−10.3; −5.8) predicted (p = 0.009). In conclusion, 8-isoprostane concentrations in EBC correlated to short-term lung function decline in CF patients with B. cenocepacia airway colonization. This correlation reflects the role of oxidative stress in CF lung pathogenesis and contributes to prediction of prognosis in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATS:

American Thoracic Society

CF:

Cystic fibrosis

EBC:

Exhaled breath condensate

ERS:

European Respiratory Society

FEV1 :

Forced expiratory volume in 1 s

IQR:

Interquartile range

ROS:

Reactive oxygen species

References

  • Adly AA (2010) Oxidative stress and disease: an updated review. Res J Immunol 3:129–145

    Article  CAS  Google Scholar 

  • Antuni JD, Kharitonov SA, Hughes D, Hodson ME, Barnes PJ (2000) Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 55:138–142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baldwin A, Mahenthiralingam E, Thickett KM et al (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43:4665–4673

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown RK, McBurney A, Lunec J, Kelly FJ (1995) Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 18:801–806

    Article  PubMed  CAS  Google Scholar 

  • Brown RK, Wyatt H, Price JF, Kelly FJ (1996) Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 9:334–339

    Article  PubMed  CAS  Google Scholar 

  • Collins CE, Quaggiotto P, Wood L, O'Loughlin EV, Henry RL, Garg ML (1999) Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis. Lipids 34:551–556

    Article  PubMed  CAS  Google Scholar 

  • Dedeckova K, Fila L, Skalicka V et al (2012) PCR detection of Burkholderia cepacia complex as one of key factors to handle a long-term outbreak. J Cyst Fibros 11:440–445

    Article  PubMed  CAS  Google Scholar 

  • Döring G, Gulbins E (2009) Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol 11:208–216

    Article  PubMed  CAS  Google Scholar 

  • Drevinek P, Mahenthiralingam E (2010) Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830

    Article  PubMed  CAS  Google Scholar 

  • Drevinek P, Baldwin A, Lindenburg L et al (2010) Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 48:34–40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fila L, Musil J (2010) Examination of exhaled breath condensate in cystic fibrosis. Cas Lek Cesk 149:173–177

    PubMed  Google Scholar 

  • Fila L, Sedlak V, Binkova I, Jakubec P, Bittenglova R, Musil J (2009) Twenty years of care for cystic fibrosis adults in Czech Republic. Vnitr Lek 55:542–548

    PubMed  CAS  Google Scholar 

  • Flume PA, O'Sullivan BP, Robinson KA et al (2007) Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 176:957–969

    Article  PubMed  CAS  Google Scholar 

  • Galli F, Battistoni A, Gambari R et al (2012) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822:690–713

    Article  PubMed  CAS  Google Scholar 

  • Ho LP, Faccenda J, Innes JA, Greening AP (1999) Expired hydrogen peroxide in breath condensate of cystic fibrosis patients. Eur Respir J 13:103–106

    Article  PubMed  CAS  Google Scholar 

  • Horvath I, Hunt J, Barnes PJ et al (2005) ATS/ERS Task Force on exhaled breath condensate. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548

    Article  PubMed  CAS  Google Scholar 

  • Isles A, Maclusky I, Corey M et al (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  PubMed  CAS  Google Scholar 

  • Kerem E, Reisman J, Corey M, Canny GJ, Levison H (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Konstan MW, Wagener JS, Vandevanter DR (2012) Risk factors for rate of decline in FEV1 in adults with cystic fibrosis. J Cyst Fibros 11:405–411

    Article  PubMed  Google Scholar 

  • Liou TG, Adler FR, Fitzsimmons SC, Cahill BC, Hibbs JR, Marshall BC (2001) Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 153:345–352

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lucidi V, Ciabattoni G, Bella S, Barnes PJ, Montuschi P (2008) Exhaled 8-isoprostane and prostaglandin E(2) in patients with stable and unstable cystic fibrosis. Free Radic Biol Med 45:913–919

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP 3rd (2009) Burkholderia cepacia complex: impact on the cystic fibrosis lung lesion. Semin Respir Crit Care Med 30:596–610

    Article  PubMed  Google Scholar 

  • Mayer-Hamblett N, Rosenfeld M, Emerson J, Goss CH, Aitken ML (2002) Developing cystic fibrosis lung transplant referral criteria using predictors of 2-year mortality. Am J Respir Crit Care Med 166:1550–1555

    Article  PubMed  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V et al (2005) ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 26:319–338

    Article  PubMed  CAS  Google Scholar 

  • Montuschi P, Kharitonov SA, Ciabattoni G et al (2000) Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55:205–209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morrissey BM, Schilling K, Weil JV, Silkoff PE, Rodman DM (2002) Nitric oxide and protein nitration in the cystic fibrosis airway. Arch Biochem Biophys 406:33–39

    Article  PubMed  CAS  Google Scholar 

  • Ratjen FA (2009) Cystic fibrosis: pathogenesis and future treatment strategies. Respir Care 54:595–605

    Article  PubMed  Google Scholar 

  • Reid DW, Misso N, Aggarwal S, Thompson PJ, Walters EH (2007) Oxidative stress and lipid-derived inflammatory mediators during acute exacerbations of cystic fibrosis. Respirology 12:63–69

    Article  PubMed  Google Scholar 

  • Sagel SD, Wagner BD, Anthony MM, Emmett P, Zemanick ET (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care 186:857–865

    Article  CAS  Google Scholar 

  • Starosta V, Rietschel E, Paul K, Baumann U, Griese M (2006) Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 129:431–437

    Article  PubMed  CAS  Google Scholar 

  • Waters V, Stanojevic S, Atenafu EG et al (2012) Effect of pulmonary exacerbations on long-term lung function decline in cystic fibrosis. Eur Respir J 40:61–66

    Article  PubMed  Google Scholar 

  • Worlitzsch D, Herberth G, Ulrich M, Döring G (1998) Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J 11:377–383

    Article  PubMed  CAS  Google Scholar 

  • Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D (2004) Cystic fibrosis adult care: consensus conference report. Chest 125:1S–39S

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the project (Ministry of Health of the Czech Republic) for conceptual development of research organization 00064203 (University Hospital Motol, Prague, Czech Republic) and by grants from the Ministry of Health of the Czech Republic NS10543-3 and NT12405-5. The authors wish to thank Ms. Věra Lopotová for help with collection of EBC and preparation of samples for analyses, Ms. Venuše Flegrová for help with lung function tests, and Ms. Jana Prokopová for help with EBC analyses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Fila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fila, L., Grandcourtová, A., Chládek, J. et al. Oxidative stress in cystic fibrosis patients with Burkholderia cenocepacia airway colonization: relation of 8-isoprostane concentration in exhaled breath condensate to lung function decline. Folia Microbiol 59, 217–222 (2014). https://doi.org/10.1007/s12223-013-0285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-013-0285-z

Keywords

Navigation