Skip to main content
Log in

Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The effect of temperature, light and nutrient composition on morphological traits was determined in seven nostocacean cyanobacteria (Anabaena planctonica, A. sphaerica var. conoidea, A. spiroides, Aphanizomenon gracile, Nostoc sp., Scytonema sp., and Tolypothrix sp.). Their morphological variability was high but only some of the features showed changes reflecting varied growth conditions. The frequency of heterocyst occurrence decreased with increasing nitrogen concentration. Within the range studied, the effect of temperature on heterocyst frequency of Tolypothrix sp. and planktonic Anabaena strains could be fitted by a normal curve with a clear optimum while linear correlation was found in Aphanizomenon gracile. T-and S-type branching was observed in both Scytonema sp. and Tolypothrix sp. strains. T-type branching was found to be markedly dependent on nitrogen concentration. The abundance of necridic cells of Tolypothrix sp. increased linearly with temperature and light intensity. Regularity of trichome coiling of A. spiroides depended on culture medium, suggesting that nutrient composition may be the main controlling factor. In contrast, the effect of the experimental conditions on the dimensions of vegetative cells and heterocysts was weak. Their variability was markedly higher within each experimental treatment than between treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal S.C., Singh V.: Viability of dried vegetative trichomes, formation of akinetes and heterocysts and akinete germination in some blue-green algae under water stress. Folia Microbiol. 44, 411–418 (1999).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried filaments, survivability and reproduction under water stress, and survivability following heat and UV exposure in Lyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. and Vaucheria geminata. Folia Microbiol. 47, 61–67 (2002).

    Article  CAS  Google Scholar 

  • Anand N.: Culture studies and taxonomy of blue-green algae — certain identification problems. Arch.Hydrobiol.Suppl. 80, 141–147 (1988).

    Google Scholar 

  • Beier C., Eckerstenb H.: Modelling the effects of nitrogen addition on soil nitrogen status and nitrogen uptake in a Norway spruce stand in Denmark. Environ.Pollut. 102, 409–414 (1998).

    Article  CAS  Google Scholar 

  • Booker M.J., Walsby A.E.: The relative form resistance of straight and helical blue-green algal filaments. Brit.Phycol.J. 14, 141–150 (1979).

    Article  Google Scholar 

  • Coveney M.F., Stites D.L., Lowe E.F., Battoe L.E., Conrow R.: Nutrient removal from eutrophic lake water by wetland filtration. Ecol.Eng. 19, 141–159 (2002).

    Article  Google Scholar 

  • Garcia-Pichel F., Nübel U., Muyzer G.: The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch.Microbiol. 169, 469–482 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Geitler L.: Cyanophyceae, Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Koeltz Scientific Books, Berlin 1932.

    Google Scholar 

  • Gugger M., Lyra C., Henriksen P., Couté A., Humbert J.-F., Sivonen K.: Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Internat.J.Syst.Evol.Microbiol. 52, 1–14 (2002).

    Google Scholar 

  • Guillard R.R.L., Lorenzen C.J.: Yellow-green algae with chlorophyllide c. J.Phycol. 8, 10–14 (1972).

    CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival of blue-green and green algae under stress conditions. Folia Microbiol. 51, 121–128 (2006a).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Motility in Oscillatoria salina as affected by different factors. Folia Microbiol. 51, 565–572 (2006b).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival and reproduction in some algae under stress conditions. Folia Microbiol. 52, 603–618 (2007).

    Article  CAS  Google Scholar 

  • Hickel B.: A helical, bloom forming Anabaena-like blue-green alga (Cyanophyta) from hypertrophic lakes. Arch.Hydrobiol. 95, 115–124 (1982).

    Article  Google Scholar 

  • Hoffmann L., Demoulin V.: Morphological variability of some species of Scytonemataceae (Cyanophyceae) under different culture conditions. Bull.Soc.Roy.Botan.Belgique 118, 189–197 (1985).

    Google Scholar 

  • Jezberová J., Komárková J.: Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions. Hydrobiologia 578, 17–27 (2007).

    Article  Google Scholar 

  • Kleinhenz V., Schnitzler W.-H., Midmore D.-J.: Seasonal effect of soil moisture on soil availability, crop N status, and yield of vegetables in a tropical, rice-based lowland. Tropenlandwirt.Beitr.Tropischen Landwirtsch.Veterinärmed. 98, 25–42 (1997).

    Google Scholar 

  • Komárek J.: A key for determination of water-bloom-forming cyanobacteria in the Czech Republic, pp. 22–85 in B. Maršálek, V. Keršner, P. Marvan (Eds): Cyanobacterial Water Blooms. (In Czech) Nadatio flos-aquae, Brno (Czechia) 1996.

    Google Scholar 

  • Komárek J., Anagnostidis K.: Modern approach to the classification system of cyanophytes — 4. Nostocales. Arch.Hydrobiol.Suppl. 82, 247–345 (1989).

    Google Scholar 

  • Kvíderová J., Lukavský J.: A new unit for crossed gradients of temperature and light. Nova Hedwigia, Beiheft Algae Extr.Environ. 123, 541–550 (2001).

    Google Scholar 

  • Liu X.J., Chen F.: Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol. 48, 619–626 (2003).

    Article  CAS  Google Scholar 

  • Liu X., Ju X., Zhanga F., Pana J., Christie P.: Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crop.Res. 83, 111–124 (2003).

    Article  Google Scholar 

  • Lyra C., Suomalainen S., Gugger M., Vezie C., Sundman P., Paulin L., Sivonen K.: Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Internat.J.Syst.Evol.Microbiol. 51, 513–526 (2001).

    CAS  Google Scholar 

  • Nalewajko C., Murphy T.P.: Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2, 45–48 (2001).

    Article  Google Scholar 

  • Rajaniemi P., Hrouzek P., Kaštovská K., Willame R., Rantala A., Hoffmann L., Komárek J., Sivonen K.: Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Internat.J.Syst.Evol.Microbiol. 55, 11–26 (2005a).

    Article  CAS  Google Scholar 

  • Rajaniemi P., Komárek J., Willame R., Hrouzek P., Kaštovská K., Hoffmann L., Sivonen K.: Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Arch.Hydrobiol., Algol. Stud. 117 (Cyanobact.Res. 6), 371–391 (2005b).

    Google Scholar 

  • Rekolainen S., Mitikka S., Vuorenma J., Johansson M.: Rapid decline of dissolved nitrogen in Finnish lakes. J.Hydrol. 304, 94–102 (2005).

    Article  CAS  Google Scholar 

  • Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J.Gen.Microbiol. 111, 1–61 (1979).

    Google Scholar 

  • Šmilauer P.: CANODRAW Users Guide v. 3.0. Microcomputer Power, Ithaca (USA) 1992.

    Google Scholar 

  • Stanier R.Y., Kuniswawa R., Mandel R.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).

    PubMed  CAS  Google Scholar 

  • Starmach K.: Cyanophyta — Blue-Green Algae, Gaucophyta — Glaucophytes. Fresh-Water Flora of Poland, Vol. 2. (In Polish) State Scientific Publishers, Warsaw 1966.

    Google Scholar 

  • Stulp B.K.: Morphological variability of Anabaena strains (Cyanophyceae) under different culture conditions. Arch.Hydrobiol.Suppl. 63, 165–176 (1982).

    Google Scholar 

  • Stulp B.K., Stam W.T.: Growth and morphology of Anabaena strains (Cyanophyceae, Cyanobacteria) in cultures under different salinities. Brit.Phycol.J. 19, 281–286 (1984).

    Article  Google Scholar 

  • Ter Braak C.J.F., Šmilauer P.: CANOCO Reference Manual. Microcomputer Power, Ithaca (USA) 1998.

    Google Scholar 

  • Zapomělová E.: Morphological variability and growth of chosen cyanobacterial strains of genera Anabaena and Aphanizomenon in the dependence on environmental conditions. MSc Thesis. (In Czech) University of South Bohemia, České Budějovice (Czechia) 2004.

    Google Scholar 

  • Zapomělová E., Řeháková-Kaštovská K., Znachor P., Komárková J.: Morphological diversity of coiled planktonic types of the genus Anabaena (Cyanobacteria) in natural populations — taxonomic consequences. Cryptogamie Algol. 28, 353–371 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zapomělová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapomělová, E., Hrouzek, P., Řeháková, K. et al. Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiol 53, 333–341 (2008). https://doi.org/10.1007/s12223-008-0052-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0052-8

Keywords

Navigation