Skip to main content
Log in

Myers-Type Theorems and Some Related Oscillation Results

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the behavior of solutions of a second-order differential equation. The existence of a zero and its localization allow us to get some compactness results. In particular we obtain a Myers-type theorem even in the presence of an amount of negative curvature. The technique we use also applies to the study of spectral properties of Schrödinger operators on complete manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, W.: A theorem of Myers. Duke Math. J. 24, 345–348 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchini, B., Mari, L., Rigoli, M.: Spectral radius, index estimates for Schrödinger operators and geometric applications. J. Funct. Anal. 256(6), 1769–1820 (2009) (English summary)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calabi, E.: On Ricci curvature and geodesics. Duke Math. J. 34, 667–676 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fernández-López, M., García-Río, E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math. 82(1), 121–132 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galloway, G.J.: A generalization of Myers’ theorem and an application to relativistic cosmology. J. Differ. Geom. 14(1), 105–116 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Galloway, G.J.: Compactness criteria for Riemannian manifolds. Proc. Am. Math. Soc. 84(1), 106–110 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hille, E.: Non-oscillation theorems. Trans. Am. Math. Soc. 64, 234–252 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leighton, W.: The detection of the oscillation of solutions of a second-order linear differential equation. Duke Math. J. 17, 57–61 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moore, R.A.: The behavior of solutions of a linear differential equation of second-order. Pac. J. Math. 5, 125–145 (1955)

    MATH  Google Scholar 

  11. Morgan, F.: Myers’ theorem with density. Kodai Math. J. 29(3), 455–461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morse, M.: The Calculus of Variations in the Large. American Mathematical Society Colloquium Publications, vol. 18. American Mathematical Society, Providence (1996). 368 pp. Reprint of the 1932 original

    Google Scholar 

  13. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  Google Scholar 

  14. Nehari, Z.: Oscillation criteria for second-order linear differential equations. Trans. Am. Math. Soc. 85, 428–445 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. Progress in Mathematics, vol. 266. Birkhäuser, Basel (2008). 282 pp.

    MATH  Google Scholar 

  16. Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Sup. Pisa (2010, to appear). arXiv:1003.2945v1

  17. Qian, Z.: Estimates for the weighted volumes and applications. Q. J. Math. 48(190), 235–242 (1997)

    Article  MATH  Google Scholar 

  18. Rimoldi, M.: A remark on Einstein warped products. Pac. J. Math. (2010, to appear). arXiv:1004.3866v3

  19. Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, San Diego (1968)

    MATH  Google Scholar 

  20. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Wylie, W.: Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc. 136(5), 1803–1806 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giona Veronelli.

Additional information

Communicated by Marco M. Peloso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastrolia, P., Rimoldi, M. & Veronelli, G. Myers-Type Theorems and Some Related Oscillation Results. J Geom Anal 22, 763–779 (2012). https://doi.org/10.1007/s12220-011-9213-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-011-9213-0

Keywords

Mathematics Subject Classification (2000)

Navigation