Skip to main content
Log in

Distributed control of multiscale microscopic chemical sensor networks

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

Micromachines and nanoscale devices can act together for high-resolution monitoring and action on multiple size scales within physical materials and biological organisms. Such multiscale systems require robust distributed controls responsive to heterogeneous and poorly characterized microenvironments. To develop such controls, this paper extends the partially observable Markov decision process formalism to machines operating asynchronously at multiple scales and with delays. We show how an approximation to this formalism readily provides aggregate performance measures needed for designing distributed controls. This approach identifies the aggregate behavior as arising from differential-delay equations approximating the system’s dynamics. We illustrate this approach to distributed controls for chemical sensor networks consisting of micro- and nanoscale devices in the context of high-resolution biomedical diagnostics and treatment through localized drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We consider discrete states for agents and the world. The model readily extends to continuous states by using probability densities and integrals over states [26].

  2. Nevertheless, the large sensor itself is significantly faster and more specific than conventional lab tests, e.g., via a blood sample.

References

  1. Bryzek J, Petersen K, McCulley W (1994) Micromachines on the march. IEEE Spectrum 31:20–31

    Article  Google Scholar 

  2. Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535

    Article  Google Scholar 

  3. Hung ES, Zhao F (1999) Diagnostic information processing for sensor-rich distributed systems. In: Proc. of the 2nd intl. conf. on information fusion (Fusion’99)

  4. Hill C, Amodeo A, Joseph JV, Patel HRH (2008) Nano- and microrobotics: how far is the reality? Expert Rev Anticancer Ther 8:1891–1897

    Article  Google Scholar 

  5. Gilman JJ (1996) Mechanochemistry. Science 274:65

    Article  Google Scholar 

  6. Wang SY, Williams RS (eds) (2005) Nanoelectronics, vol 80. Springer, New York (special issue of Appl Phys A)

    Google Scholar 

  7. Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett 5(4):803–807

    Article  Google Scholar 

  8. Jager EWH, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338

    Article  Google Scholar 

  9. Freitas RA Jr (1999) Nanomedicine: basic capabilities, vol I. Landes Bioscience, Georgetown. www.nanomedicine.com/NMI.htm

  10. Hogg T, Sretavan DW (2005) Controlling tiny multi-scale robots for nerve repair. In: Proc. of the 20th natl. conf. on artificial intelligence (AAAI2005). AAAI, Menlo Park, pp 1286–1291

    Google Scholar 

  11. How JP, Hall SR (1992) Local control design methodologies for a hierarchic control architecture. J Guid Control Dyn 15(3):654–663

    Article  MATH  Google Scholar 

  12. Hogg T, Huberman BA (1998) Controlling smart matter. Smart Mater Struc 7:R1–R14, Arxiv.org preprint cond-mat/9611024

    Article  Google Scholar 

  13. de la Rosa JL et al (2009) Shout and act: a system for heterogeneous robot coordination, and its implications for the design of rescue robot teams. Univ. of Girona

  14. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  Google Scholar 

  15. Mahfuz MU, Ahmed KM (2005) A review of micro-nano-scale wireless sensor networks for environmental protection: prospects and challenges. Sci Technol Adv Mater 6:302–306

    Article  Google Scholar 

  16. Harta JK, Martinez K (2006) Environmental sensor networks: a revolution in the earth system science? Earth-Sci Rev 78:177–191

    Article  Google Scholar 

  17. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  18. Shakkottai S, Srikant R, Shroff NB (2005) Unreliable sensor grids: coverage, connectivity and diameter. Ad Hoc Networks 3(6):702–716

    Article  Google Scholar 

  19. Liu J, Sycara KP (1995) Exploiting problem structure for distributed constraint optimization. In: Lesser V (ed) Proc. of the 1st international conference on multiagent systems (ICMAS95). AAAI, Menlo Park, pp 246–253

    Google Scholar 

  20. Pearce JP, Tambe M, Maheswaran R (2008) Solving multiagent networks using distributed constraint optimization. AI Mag 29(3):47–62

    Google Scholar 

  21. Cassandra AR, Kaelbling LP, Littman ML (1994) Acting optimally in partially observable stochastic domains. In: Proc. of the 12th natl. conf. on artificial intelligence (AAAI94). AAAI, Menlo Park, pp 1023–1028

    Google Scholar 

  22. Goldman CV, Zilberstein S (2003) Optimizing information exchange in cooperative multi-agent systems. In: Proc. of the 2nd intl. conf. on autonomous agents and multiagent systems, pp 137–144

  23. Seuken S, Zilberstein S (2008) Formal models and algorithms for decentralized decision making under uncertainty. Auton Agents Multi-Agent Syst 17:190–250

    Article  Google Scholar 

  24. de Souza PS, Talukdar S (1993) Asynchronous organizations for multi-algorithm problems. In: Proc. of ACM symposium on applied computing (SAC93), pp 286–294

  25. Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci U S A 90:7716–7718

    Article  MATH  Google Scholar 

  26. Galstyan A, Hogg T, Lerman K (2005) Modeling and mathematical analysis of swarms of microscopic robots. In: Arabshahi P, Martinoli A (eds) Proc. of the IEEE swarm intelligence symposium (SIS2005), pp 201–208

  27. Lerman K, Galstyan A, Martinoli A, Ijspeert AJ (2001) A macroscopic analytical model of collaboration in distributed robotic systems. Artif Life 7:375–393

    Article  Google Scholar 

  28. Hauskrecht M (2000) Value-function approximations for partially observable Markov decision processes. J Artif Intell Res 13:33–94

    MATH  MathSciNet  Google Scholar 

  29. Opper M, Saad D (eds) (2001) Advanced mean field methods: theory and practice. MIT, Cambridge

    MATH  Google Scholar 

  30. Goodstein DL (1975) States of matter. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  31. Simon HA (1996) The sciences of the artificial, 3rd edn. MIT, Cambridge

    Google Scholar 

  32. Berg HC (1993) Random walks in biology, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  33. Glance N, Hogg T, Huberman BA (1991) Computational ecosystems in a changing environment. Int J Mod Phys C 2(3):735–753

    Article  Google Scholar 

  34. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    Article  Google Scholar 

  35. Hogg T (2007) Coordinating microscopic robots in viscous fluids. Auton Agents Multi-Agent Syst 14(3):271–305

    Article  MathSciNet  Google Scholar 

  36. Arbuckle D, Requicha AAG (2004) Active self-assembly. In: Proc. of the IEEE intl. conf. on robotics and automation, pp 896–901

  37. Thompson DW (1992) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  38. Painter PR, Eden P, Bengtsson HU (2006) Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model 3:31

    Article  Google Scholar 

  39. Janeway CA et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland, New York

    Google Scholar 

  40. Pruitt KM, Kamau DN (1993) Mathematical models of bacterial growth, inhibition and death under combined stress conditions. J Ind Microbiol 12:221–231

    Article  Google Scholar 

  41. Freitas RA Jr (2006) Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6:2769–2775

    Article  Google Scholar 

  42. Eaton JW et al (1982) Haptoglobin: a natural bacteriostat. Science 215:691–693

    Article  Google Scholar 

  43. Hyslop PA et al (1995) Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 19:31–37

    Article  Google Scholar 

  44. Ellner SP, Guckenheimer J (2006) Dynamic models in biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  45. Bellman R, Cooke KL (1963) Differential-difference equations. Academic, New York

    MATH  Google Scholar 

  46. Corless RM, et al (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MATH  MathSciNet  Google Scholar 

  47. Natterer F (2001) The mathematics of computerized tomography. Society for Industrial and Applied Math (SIAM), Philadelphia

    MATH  Google Scholar 

  48. Hogg T, Huberman BA (2004) Dynamics of large autonomous computational systems. In: Tumer K, Wolpert D (eds) Collectives and the design of complex systems. Springer, New York, pp 295–315

    Google Scholar 

  49. Kitano H (ed) (1998) Robocup-97: robot soccer world cup I. In: Lecture notes in computer science, vol 1395. Springer, Berlin

    Google Scholar 

  50. Hogg T, Huberman BA, Williams CP (eds) (1996) Frontiers in problem solving: phase transitions and complexity, vol 81. Elsevier, Amsterdam (special issue of Artif Intell)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad Hogg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogg, T. Distributed control of multiscale microscopic chemical sensor networks. J. Micro-Nano Mech. 4, 168–177 (2008). https://doi.org/10.1007/s12213-009-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-009-0018-1

Keywords

Navigation