Skip to main content
Log in

Impact simulation of different mode failure

  • Research Paper
  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

We study the failure mode transition of steel plates under impact loading. For low impact velocities, brittle crack growths is observed while shear bands occur when the speed of the impactor is increased. Meshfree Galerkin method is employed to simulate the failure mode transition behavior. We use Johnson-Cook model for the steel. The cracks and shear bands are treated as strong discontinuities. This equal representation of the kinematics of the crack and shear bands allows for a consistent and effective modelling of these complicated events. Previous models generally used complex constitutive models for shear band modeling included fluid like behavior when the stress collapses. We demonstrate for the well-known Kalthoff problem the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari, A., Bagri, R., Bordas, S. P. A., and Rabczuk, T. (2010). “Analysis of thermoelastic waves in a twodimensional functionally graded materials domain by the meshless local petrov galerkin (mlpg) method.” CMES-Computer Modeling in Engineering and Sciences, Vol. 65, No. 1, pp. 27–74.

    MathSciNet  MATH  Google Scholar 

  • Areias, P. M. A. and Rabczuk, T. (2008). “Quasi-static crack propagation in plane and plate structures using set-valued tractionseparation laws.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 3, pp. 475–505.

    Article  MATH  Google Scholar 

  • Areias, P. M. A. and Rabczuk, T. (2010). “Smooth finite strain plasticity with nonlocal pressure support.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 106–134.

    MATH  Google Scholar 

  • Belytschko, T. and Black, T. (1999). “Elastic crack growth in finite elements with minimal remeshing.” International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, pp. 601–620.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T. and Fleming, M. (1999). “Smoothing, enrichment and contact in the element free galerkin method.” Computers & Structures, Vol. 71, No. 2, pp. 173–195.

    Article  MathSciNet  Google Scholar 

  • Belytschko, T., Krongauz, Y., Dolbow, J., and Gerlach, C. (1998). “On the completeness of meshfree particle methods.” International Journal for Numerical Methods in Engineering, Vol. 43, No. 2, pp. 785–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996). “Meshless methods: An overview and recent developments.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1, pp. 3–47.

    Article  MATH  Google Scholar 

  • Belytschko, T. and Lu, Y. Y. (1995). “Element-free galerkin methods for static and dynamic fracture.” International Journal of Solids and Structures, Vol. 32, No. 17, pp. 2547–2570.

    Article  MATH  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1994). “Element-free galerkin methods.” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, pp. 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1995). “Crack propagation by elementfree galerkin methods.” Engineering Fracture Mechanics, Vol. 51, No. 2, pp. 295–315.

    Article  Google Scholar 

  • Bonet, J. and Kulasegaram, S. (2000). “Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulations.” International Journal for Numerical Methods in Engineering, Vol. 47, No. 6, pp. 1189–1214.

    Article  MATH  Google Scholar 

  • Bordas, S., Natarajan, S., Dal Pont, S., Rabczuk, T., Kerfriden, P., Mahapatra, D. R., Noel, D., and Gao, Z. (2011). “On the performance of strain smoothing for enriched finite element approximations (xfem/gfem/pufem).” International Journal for Numerical Methods in Engineering, Vol. 86, No. 12, pp. 637–666.

    Article  MATH  Google Scholar 

  • Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Natarajan, S., Bog, T., Nguyen, V. P., Do Minh, Q., and Nguyen Vinh, H. (2010). “Strain smoothing in fem and xfem.” Computers and Structures,Vol. 88, Nos. 23–24, pp. 1419–1443.

    Article  Google Scholar 

  • Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment.” Engineering Fracture Mechanics, No. 75, pp. 943–960.

  • Danielson, K. T., Hao, S., Liu, W. K., Uras, R. A., and Li, S. F. (2000). “Parallel computation of meshless methods for explicit dynamic analysis.” International Journal for Numerical Methods in Engineering, Vol. 47, Nos. 8–9, pp. 1323–1341.

    Article  MATH  Google Scholar 

  • Dilts, G. A. (2000). “Moving least square particle hydrodynamics i: Consistency and stability.” International Journal for Numerical Methods in Engineering, Vol. 44, No. 1, pp. 1115–1155.

    MathSciNet  Google Scholar 

  • Duarte, C. A. M. and Oden, J. T. (1996). “An h-p adaptive method using clouds.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 237–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Feist, C. and Hofstetter, G. (2007). “3D fracture simulations based on the sda.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, No. 6, pp. 189–212.

    Article  MATH  Google Scholar 

  • Feldman, J. and Bonet, J. (2007). “Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 3, pp. 295–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Gummalla, R. R. and Batra, R. C. (2000). “Effect on material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate.” International Journal of Fracture, Vol. 101, No. 1, pp. 99–140.

    Article  Google Scholar 

  • Johnson, G. R. and Cook, W. H. (1983). “A constitutive model and data for metals subjected to large strains, high strain rates and high temperature.” Proceedings of the 7th International Symposium on ballistics, The Hague, Netherlands, pp. 1–7.

  • Hao, S., Liu, W. K., Klein, P. A., and Rosakis, A. J. (2004). “Modeling and simulation of intersonic crack growth.” International Journal of Solids and Structures, Vol. 41, No. 7, pp. 1773–1799.

    Article  MATH  Google Scholar 

  • Hegen, D. (1996). “Element-free galerkin methods in combination with finite element approaches.” Computer Methods in Applied Mechanics and Engineering, Vol. 135, No. 1, pp. 143–166.

    Article  MATH  Google Scholar 

  • Kalthoff, J. F. (2000). “Modes of dynamic shear failure in solids.” International Journal of Fracture, Vol. 101, Nos. 1–2, pp. 1–31.

    Article  Google Scholar 

  • Kalthoff, J. F. and Winkler, S. (1987). “Failure mode transition at high rates of shear loading.” International Conference on Impact Loading and Dynamic Behavior of Materials, Vol. 1, No. 1, pp. 185–195.

    Google Scholar 

  • Lancaster, P. and Salkauskas, K. (1981). “Surfaces generated by moving least squares methods.” Mathematics and Computation, Vol. 37, pp. 141–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, P. B. E., Rabczuk, T., Mai-Duy, N., and Tran-Cong, T. (2010a). “A moving irbfn based integration-free meshless method.” CMESComputer Modeling in Engineering and Sciences, Vol. 61, No. 1, pp. 63–109.

    MathSciNet  MATH  Google Scholar 

  • Le, P. B. E., Rabczuk, T., Mai-Duy, N., and Tran-Cong, T. (2010b). “A moving local irbfn based galerkin meshless method.” CMESComputer Modeling in Engineering and Sciences, Vol. 66, No. 1, pp. 25–52.

    MathSciNet  MATH  Google Scholar 

  • Le Canh, V., Nguyen-Xuan, H., Askes, H., Bordas, S., Rabczuk, T., and Nguyen-Vinh, H. (2010). “A cell based smoothed finite element method for kinematic limit analysis.” International Journal for Numerical Methods in Engineering, Vol. 83, No. 12, pp. 1651–1674.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S. and Bo, C. (2003). “Simonson. Meshfree simulation of ductile crack propagation.” International Journal of Computational Methods in Engineering Science and Mechanics, Vol. 6, No. 12, pp. 1–19.

    MATH  Google Scholar 

  • Li, S., Liu, W. K., Rosakis, A., Belytschko, T., and Hao, W. (2002). “Mesh free galerkin simulations of dynamic shear band propagation and failure mode transition.” International Journal of Solids and Structures, Vol. 39, No. 1, pp. 1213–1240.

    Article  MATH  Google Scholar 

  • Li, L., Liu, S., and Wang, H. (2008). “Meshless analysis of ductile failure.” CMES-Computer Modeling in Engineering & Sciences, Vol. 36, No. 2, pp. 173–192.

    MathSciNet  MATH  Google Scholar 

  • Liu, W. K., Jun, S., and Zhang, Y. F. (1995). “Reproducing kernel particle methods.” International Journal for Numerical Methods in Engineering, Vol. 20, No. 38, pp. 1081–1106.

    MathSciNet  MATH  Google Scholar 

  • Lucy, L. (1977). “A numerical approach to the testing of the fission hypothesis.” Astronomical Journal, Vol. 82, No. 1, pp. 1013–1024.

    Article  Google Scholar 

  • Melenk, J. M. and Babuska, I. (1996). “The partition of unity finite element method: Basic theory and applications.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, Nos. 1–4, pp. 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J. J. (1994). “Simulating free surface flows with sph.” Journal of Computational Physics, Vol. 110, No. 10, pp. 399–406.

    Article  MATH  Google Scholar 

  • Nayroles, B. and Touzot, G. (1992). “Generating the finite element method: Diffuse approximation and diffuse elements.” Computational Mechanics, Vol. 10, No. 5, pp. 307–319.

    Article  MATH  Google Scholar 

  • Nguyen, V. P., Rabczuk, T., Bordas, S., and Duflot, M. (2008). “Meshless methods: A review and computer implementation aspects.” Mathematics and Computers in Simulation, Vol. 79, pp. 763–813.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas, S. (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177.

    Article  MATH  Google Scholar 

  • Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T., and Nguyen-Xuan, H. (2010). “A node based smoothed finite element method (ns-fem) for upper bound solution to visco-elastoplastic analysis of solids using triangular and tetrahedral meshes.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 45–48, pp. 3005–2027.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008). “A smoothed finite element method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13–16, pp. 1184–1203.

    Article  MATH  Google Scholar 

  • Ortiz, M., Leroy, Y., and Needleman, A. (1987). “Finite element method for localized failure analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 61, No. 1, pp. 189–213.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Akkermann, J., and Eibl, J. (2005). “A numerical model for reinforced concrete structures.” International Journal of Solids and Structures, Vol. 42, Nos. 5–6, pp. 1327–1354.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Areias, P. (2006a). “A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis.” CMES-Computer Modeling in Engineering & Sciences, Vol. 16, No. 2, pp. 115–130.

    Google Scholar 

  • Rabczuk, T. and Areias, P. M. A. (2006b). “A new approach for modelling slip lines in geological materials with cohesive models.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, No. 11, pp. 1159–1172.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007a). “A simplified meshfree method for shear bands with cohesive surfaces.” International Journal for Numerical Methods in Engineering, Vol. 69, No. 5, pp. 993–1021.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007b). “A meshfree thin shell method for non-linear dynamic fracture.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 5, pp. 524–548.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2005). “Adaptivity for structured meshfree particle methods in 2d and 3d.” International Journal for Numerical Methods in Engineering, Vol. 63, No. 11, pp. 1559–1582.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2006). “Application of particle methods to static fracture of reinforced concrete structures.” International Journal of Fracture, Vol. 137, Nos. 1–4, pp. 19–49.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2007). “A three dimensional large deformation meshfree method for arbitrary evolving cracks.” Computer Methods in Applied Mechanics and Engineering, Vol. 196, Nos. 29–30, pp. 2777–27997.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004a). “Stable particle methods based on lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12–14, pp. 1035–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan. H. (2010c). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 37–40, pp. 2437–2455.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2007c). “A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G.. (2010a) “On three-dimensional modelling of crack growth using partition of unity methods.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1391–1411.

    Article  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2003). “Simulation of high velocity concrete fragmentation using SPH/MLSPH.” International Journal for Numerical Methods in Engineering, Vol. 56, No. 10, pp. 1421–1444.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2004). “Numerical analysis of prestressed concrete beams using a coupled element free galerkin/finite element method.” International Journal of Solids and Structures, Vol. 41, Nos. 3–4, pp. 1061–1080.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2006). “Modelling dynamic failure of concrete with meshfree methods.” International Journal of Impact Engineering, Vol. 32, No. 11, pp. 1878–1897.

    Article  Google Scholar 

  • Rabczuk, T., Eibl, J., and Stempniewski, L. (2004b). “Numerical analysis of high speed concrete fragmentation using a meshfree lagrangian method.” Engineering Fracture Mechanics, Vol. 71, Nos. 4–6, pp. 547–556.

    Article  Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J.-H., and Belytschko, T. “Immersed particle method for fluid-structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 48–71.

  • Rabczuk, T., Kim, J. Y., Samaniego, E., and Belytschko, T. (2004c). “Homogenization of sandwich structures.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 7, pp. 1009–1027.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Samaniego E. (2008). “Discontinuous modelling of shear bands using adaptive meshfree methods.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 6–8, pp. 641–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Samaniego, E., and Belytschko, T. (2007d). “Simplified model for predicting impulsive loads on submerged structures to account for fluidstructure interaction.” International Journal of Impact Engineering, Vol. 34, No. 2, pp. 163–177.

    Article  Google Scholar 

  • Rabczuk, T., Song, J.-H., and Belytschko, T. (2009). “Simulations of instability in dynamic fracture by the cracking particles method.” Engineering Fracture Mechanics, Vol. 76, No. 6, pp. 730–741.

    Article  Google Scholar 

  • Rabczuk, T., Xiao, S. P., and Sauer, A. (2006). “Coupling of meshfree methods with finite elements: basic concepts and test results.” Communications in Numerical Methods in Engineering, Vol. 22, No. 10, pp. 1031–1065.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Zi, G. (2007). “A meshfree method based on the local partition of unity for cohesive cracks.” Computational Mechanics, Vol. 39, No. 6, pp. 743–760.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Gerstenberger, A., and Wall, W. A. (2008). “A new crack tip element for the phantom node method with arbitrary cohesive cracks.” International Journal for Numerical Methods in Engineering, Vol. 75, No. 5, pp. 577–599.

    Article  MATH  Google Scholar 

  • Randles, P. W. and Libersky, L. D. (1997). “Recent improvements in sph modeling of hypervelocity impact.” International Journal of Impact Engineering, Vol. 20, No. 10, pp. 525–532.

    Article  Google Scholar 

  • Randles, P. W. and Libersky, L. (2000). “Normalized sph with stress points.” International Journal for Numerical Methods in Engineering, Vol. 48, No. 4, pp. 1445–1461.

    Article  MATH  Google Scholar 

  • Ravi-Chandar, K., Lu, J., Yang, B., and Zhu, Z. (2000). “Failure modes transitions in polymers under high strain rate loading.” International Journal of Fracture, Vol. 101, No. 8, pp. 33–72.

    Article  Google Scholar 

  • Ravisankar, M. V. S. and Batra, R. C. (2000). “Three-dimensional numerical simulation of the kalthoff experiment.” International Journal of Fracture, Vol. 105, No. 1, pp. 161–186.

    Google Scholar 

  • Rodriguez-Paz, M. and Bonet, J. (2005). “A corrected smooth particle hydrodynamics formulation of the shallow-water equations.” Computers & Structures, Vol. 83, Nos. 17–18, pp. 1396–1410.

    Article  MathSciNet  Google Scholar 

  • Sancho, J. M., Planas, J., and Fathy, A. M. (2007). “3D simulation of concrete fracture using embedded crack elements without enforcing crack path continuity.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, No. 6, pp. 173–187.

    Article  MATH  Google Scholar 

  • Shen, S. P. and Atluri, S. N. (2005). “A tangent stiffness mlpg method for atom/continuum multiscale simulation.” CMES-Computer Modeling in Engineering & Sciences, Vol. 7, No. 4, pp. 49–67.

    MathSciNet  MATH  Google Scholar 

  • Song, J.-H., Areais, P. M. A., and Belytschko, T. (2006). “A method for dynamic crack and shear band propagation with phantom nodes.” International Journal for Numerical Methods in Engineering, Vol. 67, No. 1, pp. 868–893.

    Article  MATH  Google Scholar 

  • Song, J. H. and Belytschko, T. (2009). “Cracking node method for dynamic fracture with finite elements.” International Journal of Solids and Structures, Vol. 77, No. 2, pp. 360–385.

    MathSciNet  MATH  Google Scholar 

  • Swegle, J. W., Hicks, D. L., and Attaway, S. W. (1995). “Smoothed particle hydrodynamics stability analysis.” Journal of Computational Physics, Vol. 116, No. 1, pp. 123–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., and Rabczuk, T. (2011). “An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates.” Applied Mathematics and Computation, Vol. 217, No. 17, pp. 7324–7348.

    Article  MathSciNet  MATH  Google Scholar 

  • Wall, W. A. and Rabczuk, T. (2008). “Fluid-structure interaction in lower airways of ct-based lung geometries.” International Journal for Numerical Methods in Fluids, Vol. 57, No. 5, pp. 653–675.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X. P. and Needleman, A. (1994). “Numerical simulations of fast crack growth in brittle solids.” Journal of the Mechanics and Physics of Solids, Vol. 42, No. 9, pp. 1397–1434.

    Article  MATH  Google Scholar 

  • Zhou, M., Ravichandran, G., and Rosakis, A. (1996). “Dynamically propagating shear bands in impact-loaded prenotched plates-I.” Journal Mechanics Physics and Solids, Vol. 44, No. 6, pp. 981–1006.

    Article  Google Scholar 

  • Zhou, M, Ravichandran, G., and Rosakis, A.(2000). “Dynamically propagating shear bands in impact-loaded prenotched plates-II.” Journal Mechanics Physics and Solids, Vol. 44, No. 6, pp. 1007–1032.

    Article  Google Scholar 

  • Zi, G., Rabczuk, T., and Wall, W. (2007). “Extended meshfree methods without branch enrichment for cohesive cracks.” Computational Mechanics, Vol. 40, No. 2, pp. 367–382.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H. Impact simulation of different mode failure. KSCE J Civ Eng 16, 610–617 (2012). https://doi.org/10.1007/s12205-012-1149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1149-9

Keywords

Navigation