Skip to main content
Log in

An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda)

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ali K, Dorgai L, Abraham M, Hermesz E (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arts M-J, Schill RO, Knigge T, Eckwert H, Kammenga JE, Köhler H-R (2004) Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicology 13:739–755

    Article  CAS  PubMed  Google Scholar 

  • Bahrndorff S, Mariën J, Loeschke V, Ellers J (2009) Dynamics of heat-induced thermal stress resistance and Hsp70 expression in the springtail, Orchesella cincta. Funct Ecol 23:233–239

    Article  Google Scholar 

  • Bond U (1988) Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J 7:3509–3518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Xue S, Zhou Q, Xie X (2011) Multilevel ecotoxicity assessment of polycyclic musk in the earthworm Eisenia fetida using traditional and molecular endpoints. Ecotoxicology 20:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Peck LS (2009) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman JS, Heckathorn SA, Hallberg RL (1995) Heat-shock proteins and thermotolerance: linking molecular and ecological perspectives. Trends Ecol Evol 10:305–306

    Article  CAS  PubMed  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • De Pomerai DI (1996) Heat schock proteins as biomarkers of pollution. Human and Exp. Toxicol 15:279–285

    Google Scholar 

  • Eckwert H, Köhler H-R (1997) The indicative value of the hsp70 stress response as a marker for metal effects in Oniscus asellus (Isopoda) field populations: variability between populations from metal polluted and uncontaminated sites. Appl Soil Ecol 6:275–282

    Article  Google Scholar 

  • Edington BV, Whelan SA, Highttower LE (1989) Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: Additional support for the abnormal protein hypothesis of induction. J Cell Physiol 139:219–228

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Krebs RA (1998) Natural and genetic engeneering of the heat-shock protein hsp70 in Drosophila melanogaster: consequences for thermotolerance. Am Zool 38:503–517

    CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  • Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI (2013) Identification of a tissue-selective heat shock response regulatory network. PLoS Genet 9:18

    Article  Google Scholar 

  • Hunt CR, Parsian AJ, Goswami PC, Kozak CA (1999) Characterization and expression of the mouse Hsc70 gene. Biochim Biophys Acta 19:315–325

    Article  Google Scholar 

  • Jiao C, Wang Z, Li F, Zhang C, Xiang J (2004) Cloning, sequencing and expression analysis of cDNA encoding a constitutive heat shock protein 70 (HSC70) in Fenneropenaeus chinensis. Chin Sci Bull 49:2385–2393

    CAS  Google Scholar 

  • Kammenga JE, Dallinger R, Donker MH, Kohler H-R, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Contam Toxicol 164:93–147

    CAS  PubMed  Google Scholar 

  • Karouna-Renier NK, Yang WJ, Rao KR (2003) Cloning and characterization of a 70 kDa heat shock cognate gene (HSC70) from two species of Chironomus. Insect Mol Biol 12:19–26

    Article  CAS  PubMed  Google Scholar 

  • Köhler H-R, Triebskorn R, Stocker W, Kloetzel PM, Alberti G (1992) The 70 kD heat shock protein (hsp 70) in soil invertebrates: a possible tool for monitoring environmental toxicants. Arch Environ Contam Toxicol 22:334–338

    Article  PubMed  Google Scholar 

  • Köhler H-R, Belitz B, Eckwert H, Adam R, Rahman B, Trontelj P (1998) Validation of hsp70 stress gene expression as a marker of metal effects in Deroceras reticulatum (Pulmonata): Correlation with demographic parameters. Environ Toxicol Chem 17:2246–2253

    Article  Google Scholar 

  • Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitious function. J Exp Biol 206:3119–3124

    Article  PubMed  Google Scholar 

  • La Rosa M, Sconzo G, Giudice G, Roccheri MC, Di Carlo M (1990) Sequence of a sea urchin hsp70 gene and its 5′ flanking region. Gene 96:295–300

    Article  PubMed  Google Scholar 

  • Leignel V, Cibois M, Moreau B, Chenais B (2007) Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae. Gene 396:84–92

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang WJ, Zhu XJ, Karouna-Renier NK, Rao RK (2004) Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones 9:313–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcheler-Bauer A, Shennan L, Anderson JB, Chitasz F, Derbyshire MK et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  Google Scholar 

  • Marcucci R, Stefani P, Gomes SL (1995) A unique intron-containing hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii. Gene 152:19–26

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ming J, Xie J, Xu P, Liu W, Ge X, Liu B, He Y, Cheng Y, Zhou Q, Pan L (2010) Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol 28:407–418

    Article  CAS  PubMed  Google Scholar 

  • Morris JP, Thatje S, Hauton C (2013) The use of stress-70 proteins in physiology: a re-appraisal. Mol Ecol 22:1494–1502

    Article  CAS  PubMed  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller FW, Igloi GL, Beck CF (1992) Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. Gene 111:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nadeau D, Corneau S, Plante I, Morrow G, Tanguay RM (2001) Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperones 6:153–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254

    Article  CAS  PubMed  Google Scholar 

  • Reuner A, Brümmer F, Schill RO (2008) Heat shock proteins (Hsp70) and water content in the estivating Mediterranean Grunt Snail (Cantareus apertus). Comp Biochem Physiol B 151:28–31

    Article  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Rochester DE, Winer JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J 5:451–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders BM (1990) Stress proteins: potential as multitiered biomarkers. Lewis Publishers, CRC Press, Boca Raton, USA

    Google Scholar 

  • Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23:49–75

    Article  CAS  PubMed  Google Scholar 

  • Schill RO, Steinbruck GH, Kohler H-R (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Sconzo G, Scardina G, Ferraro MG (1992) Characterization of a new member of the sea urchin Paracentrotus lividus hsp70 gene family and its expression. Gene 121:353–358

    Article  CAS  PubMed  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  PubMed  Google Scholar 

  • Snutch TP, Heschl MF, Baillie DL (1988) The Caenorhabditis elegans hsp70 gene family: a molecular genetic characterization. Gene 64:241–255

    Article  CAS  PubMed  Google Scholar 

  • Sørensen J, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Sorger P (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Google Scholar 

  • Sylvain ZA, Wall DH (2011) Linking soil biodiversity and vegetation: implications for a changing planet. Am J Bot 98:517–527

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomanek L, Sanford E (2003) Heat-shock protein 70 (Hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (genus: Tegula). Biol Bull 205:276–284

    Article  CAS  PubMed  Google Scholar 

  • Waagner D, Bayley M, Marïen J, Holmstrup M, Ellers J, Roelfs D (2012) Ecological and molecular consequences of prolonged drought and subsequent rehydration in Fosomia candida. J Insect Physiol 58:130–137

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Wright R, Duck N, Gasser C, Fraley R, Shah D (1988) The inhibition of petunia hsp70 mRNA processing during CdC12 stress. Mol Gen Genet 211:315–319

    Article  CAS  Google Scholar 

  • Wisniewska M, Karlberg T, Lehtio L, Johansson I, Kotenyova T, Moche M, Schuler H (2010) Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B’, and HSPA5/BiP/GRP78. PLoS One 5:0008625

    Article  Google Scholar 

  • Yost HJ, Lindquist S (1988) Translation of unspliced transcripts after heat shock. Science 242:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Zanger M, Alberti G, Kuhn M, Köhler H-R (1996) The stress −70 protein family in diplopods: induction and characterization. J. Comp. Physiol. B 156:622–627

    Google Scholar 

  • Zhang D-Z, Hewitt GM (1998) Special DNA extraction methods for some animal species. Chapman & Hall, London, UK

    Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F et al. (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by D. Ammermann, N.K. Jacob, M. Knigge, T. Monsinjon and R. Paxton. The authors are also grateful to M. Bulant for assistance with the phylogenetic analysis. This study received funding from the German Research Council (Grant No. Ko 1978/2-1/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knigge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knigge, T., Bachmann, L. & Köhler, HR. An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda). Cell Stress and Chaperones 19, 741–747 (2014). https://doi.org/10.1007/s12192-014-0494-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0494-7

Keywords

Navigation