Skip to main content

Advertisement

Log in

Antibody therapy for Adult T-cell leukemia–lymphoma

  • Progress in Hematology
  • Memorial PIM: adult T-cell leukemia—from discovery to recent progress
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Adult T-cell leukemia–lymphoma (ATL) has a very poor prognosis. Since there currently are limited treatment options for ATL patients, several novel agents are being developed and tested clinically. Antibody therapy against ATL was initially started with interleukin-2 receptor α-subunit, CD25, as a target molecule in the late 1980s, and is currently ongoing. CC chemokine receptor 4 (CCR4) was postulated as a novel molecular target in ATL antibody therapy, and humanized anti-CCR4 mAb (KW-0761), whose Fc region was defucosylated to enhance antibody-dependent cellular cytotoxicity, was developed. A phase I study of KW-0761 in relapsed ATL and peripheral T-cell lymphoma was started in 2006, and a subsequent phase II study was completed in 2010. KW-0761 showed a clinically meaningful antitumor activity in patients with relapsed ATL, with an acceptable toxicity profile. The prognosis of ATL patients should be improved in the near future with clinical applications of novel treatment strategies, including those involving KW-0761 and other promising antibody therapies targeting CD25 or CD30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50:481–92.

    PubMed  CAS  Google Scholar 

  2. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, et al. Adult T cell leukemia: antigen in adult T-cell leukemia cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA. 1981;78:6476–80.

    Article  PubMed  CAS  Google Scholar 

  3. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T cell leukemia and its implication in the disease. Proc Natl Acad Sci USA. 1982;79:2031–5.

    Article  PubMed  CAS  Google Scholar 

  4. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79:428–37.

    Article  PubMed  CAS  Google Scholar 

  5. Tsukasaki K, Utsunomiya A, Fukuda H, Shibata T, Fukushima T, Takatsuka Y, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25:5458–64.

    Article  PubMed  CAS  Google Scholar 

  6. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77:7415–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gill PS, Harrington W Jr, Kaplan MH, Ribeiro RC, Bennett JM, Liebman HA, et al. Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med. 1995;332:1744–8.

    Article  PubMed  CAS  Google Scholar 

  8. Bazarbachi A, Plumelle Y, Carlos Ramos J, Tortevoye P, Otrock Z, Taylor G, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28:4177–83.

    Article  PubMed  CAS  Google Scholar 

  9. Ishitsuka K, Fukushima T, Tsukasaki K, Tobinai K. Is zidovudine and interferon-alfa the gold standard for adult T-cell leukemia-lymphoma? J Clin Oncol. 2010;28:e765.

    Article  PubMed  Google Scholar 

  10. Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010;115:4337–43.

    Article  PubMed  CAS  Google Scholar 

  11. Utsunomiya A, Miyazaki Y, Takatsuka Y, Hanada S, Uozumi K, Yashiki S, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:15–20.

    Article  PubMed  CAS  Google Scholar 

  12. Fukushima T, Miyazaki Y, Honda S, Kawano F, Moriuchi Y, Masuda M, et al. Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia. 2005;19:829–34.

    Article  PubMed  CAS  Google Scholar 

  13. Okamura J, Utsunomiya A, Tanosaki R, Uike N, Sonoda S, Kannagi M, et al. Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma. Blood. 2005;105:4143–5.

    Article  PubMed  CAS  Google Scholar 

  14. Hishizawa M, Kanda J, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood. 2010;116:1369–76.

    Article  PubMed  CAS  Google Scholar 

  15. Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med. 2004;351:1860–73.

    Article  PubMed  CAS  Google Scholar 

  16. Satou Y, Nosaka K, Koya Y, Yasunaga JI, Toyokuni S, Matsuoka M. Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia. 2004;18:1357–63.

    Article  PubMed  CAS  Google Scholar 

  17. Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A, et al. Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci. 2009;100:341–8.

    Article  PubMed  CAS  Google Scholar 

  18. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2001;346:235–42.

    Article  Google Scholar 

  19. Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379–91.

    Article  PubMed  CAS  Google Scholar 

  20. Waldmann TA, Greene WC, Sarin PS, Saxinger C, Blayney DW, Blattner WA, et al. Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sézary leukemia, and their distinction using anti-Tac. Monoclonal antibody identifying the human receptor for T cell growth factor. J Clin Invest. 1984;73:1711–8.

    Article  PubMed  CAS  Google Scholar 

  21. Uchiyama T, Hori T, Tsudo M, Wano Y, Umadome H, Tamori S, et al. Interleukin-2 receptor (Tac antigen) expressed on adult T cell leukemia cells. J Clin Invest. 1985;76:446–53.

    Article  PubMed  CAS  Google Scholar 

  22. Waldmann TA, Goldman CK, Bongiovanni KF, Sharrow SO, Davey MP, Cease KB, et al. Therapy of patients with human T-cell lymphotrophic virus I-induced adult T-cell leukemia with anti-Tac, a monoclonal antibody to the receptor for interleukin-2. Blood. 1988;72:1805–16.

    PubMed  CAS  Google Scholar 

  23. Waldmann TA, White JD, Goldman CK, Top L, Grant A, Bamford R, et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood. 1993;82:1701–12.

    PubMed  CAS  Google Scholar 

  24. Waldmann TA. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene. 2007;26:3699–703.

    Article  PubMed  CAS  Google Scholar 

  25. Dickman S. Antibodies stage a comeback in cancer treatment. Science. 1998;280:1196–7.

    Article  PubMed  CAS  Google Scholar 

  26. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.

    Article  PubMed  CAS  Google Scholar 

  27. Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA. 1989;86:10029–33.

    Article  PubMed  CAS  Google Scholar 

  28. Waldmann TA, White JD, Carrasquillo JA, Reynolds JC, Paik CH, Gansow OA, et al. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood. 1995;86:4063–75.

    PubMed  CAS  Google Scholar 

  29. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18:1622–36.

    PubMed  CAS  Google Scholar 

  30. Foss FM, Saleh MN, Krueger JG, Nichols JC, Murphy JR. Diphtheria toxin fusion proteins. Curr Top Microbiol Immunol. 1998;234:63–81.

    Article  PubMed  CAS  Google Scholar 

  31. Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, et al. Pivotal Phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88.

    PubMed  CAS  Google Scholar 

  32. Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol. 2001;78:57–110.

    Article  PubMed  CAS  Google Scholar 

  33. Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999;11:81–8.

    Article  PubMed  CAS  Google Scholar 

  34. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J Exp Med. 2001;194:847–53.

    Article  PubMed  CAS  Google Scholar 

  35. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2005;16:1643–56.

    Article  Google Scholar 

  36. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res. 2006;66:5716–22.

    Article  PubMed  CAS  Google Scholar 

  37. Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci. 2006;97:1139–46.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99:1505–11.

    Article  PubMed  CAS  Google Scholar 

  39. Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9:3625–34.

    PubMed  CAS  Google Scholar 

  40. Voso MT, Pantel G, Rutella S, Weis M, D’Alò F, Urbano R, et al. Rituximab reduces the number of peripheral blood B-cells in vitro mainly by effector cell-mediated mechanisms. Haematologica. 2002;87:918–25.

    PubMed  CAS  Google Scholar 

  41. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6:443–6.

    Article  PubMed  CAS  Google Scholar 

  42. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998;163:59–76.

    Article  PubMed  CAS  Google Scholar 

  44. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(26):733–40.

    Google Scholar 

  45. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278:3466–73.

    Article  PubMed  CAS  Google Scholar 

  46. Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res. 2005;11:2327–36.

    Article  PubMed  CAS  Google Scholar 

  47. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, et al. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43:1183–93.

    Article  PubMed  CAS  Google Scholar 

  48. Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res. 2006;12:2879–87.

    Article  PubMed  CAS  Google Scholar 

  49. Shibata-Koyama M, Iida S, Misaka H, Mori K, Yano K, Shitara K, et al. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol. 2009;37:309–21.

    Article  PubMed  CAS  Google Scholar 

  50. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 2004;64:2127–33.

    Article  PubMed  CAS  Google Scholar 

  51. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res. 2010;16:1520–31.

    Article  PubMed  CAS  Google Scholar 

  52. Ishida T, Iida S, Akatsuka Y, Ishii T, Miyazaki M, Komatsu H, et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-Cell leukemia/lymphoma. Clin Cancer Res. 2004;10:7529–39.

    Article  PubMed  CAS  Google Scholar 

  53. Yano H, Ishida T, Inagaki A, Ishii T, Ding J, Kusumoto S, et al. Defucosylated anti CC chemokine receptor 4 monoclonal antibody combined with immunomodulatory cytokines: a novel immunotherapy for aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res. 2007;13:6494–500.

    Article  PubMed  CAS  Google Scholar 

  54. Ishida T, Ishii T, Inagaki A, Yano H, Kusumoto S, Ri M, et al. The CCR4 as a novel-specific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia. 2006;20:2162–8.

    Article  PubMed  CAS  Google Scholar 

  55. Yano H, Ishida T, Imada K, Sakai T, Ishii T, Inagaki A, et al. Augmentation of antitumour activity of defucosylated chimeric anti-CCR4 monoclonal antibody in SCID mouse model of adult T-cell leukaemia / lymphoma using G-CSF. Br J Haematol. 2008;140:586–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    Article  PubMed  CAS  Google Scholar 

  57. Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rcnull (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol. 2008;324:53–76.

    Article  PubMed  CAS  Google Scholar 

  58. Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, et al. Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother. 2009;58:1195–206.

    Article  PubMed  CAS  Google Scholar 

  59. Ito A, Ishida T, Utsunomiya A, Sato F, Mori F, Yano H, et al. Defucosylated anti-CCR4 monoclonal antibody exerts potent ADCC against primary ATLL cells mediated by autologous human immune cells in NOD/Shi-scid, IL-2R gamma(null) mice in vivo. J Immunol. 2009;183:4782–91.

    Article  PubMed  CAS  Google Scholar 

  60. Yamamoto K, Utsunomiya A, Tobinai K, Tsukasaki K, Uike N, Uozumi K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28:1591–8.

    Article  PubMed  CAS  Google Scholar 

  61. Tobinai K. Current management of adult T-cell leukemia/lymphoma. Oncology (Williston Park). 2009;14:1250–6.

    Google Scholar 

  62. Ishida T, Inagaki H, Utsunomiya A, Takatsuka Y, Komatsu H, Iida S, et al. CXCR3 and CCR4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10:5494–500.

    Article  PubMed  CAS  Google Scholar 

  63. Ohshima K, Karube K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, et al. Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression: Analysis of prognosis. Int J Oncol. 2004;25:605–13.

    PubMed  CAS  Google Scholar 

  64. Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol. 2006;6:295–307.

    Article  PubMed  CAS  Google Scholar 

  65. Zou W. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.

    Article  PubMed  CAS  Google Scholar 

  66. Ishida T, Ueda R. Immunopathogenesis of lymphoma: focus on CCR4. Cancer Sci. 2011;102:44–50.

    Article  PubMed  CAS  Google Scholar 

  67. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  68. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.

    Article  PubMed  CAS  Google Scholar 

  69. Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007;7:270–80.

    Article  PubMed  CAS  Google Scholar 

  70. Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR, et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood. 2010;116:1211–9.

    Article  PubMed  CAS  Google Scholar 

  71. Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27:453–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the members of the CCR4 research group, Drs. Asahi Ito, Fumiko Mori, Ayako masaki, Fumihiko Sato, Toshihiko Ishii, Atsushi Inagaki, Hiroki Yano, Shigeru Kusumoto, Hirokazu Komatsu, and Shinsuke Iida (Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan), Dr. Hiroshi Inagaki and Hisashi Takino (Department of Clinical Pathology, Nagoya City University Graduate School of Medical Sciences), Dr. Atae Utsunomiya (Department of Hematology, Imamura Bun-in Hospital), Dr. Kouji Matsushima (Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan), Drs. Kenya Shitara, Shiro Akinaga, Takeshi Takahashi, Rinpei Niwa, and Nobuo Hanai (Tokyo Research Laboratories, Kyowa Hakko Kirin), for continuing fruitful collaborations over many years. We wish to thank Ms. Chiori Fukuyama for her skillful technical assistance. This work was supported by Grants-in-Aid for General Scientific Research (No. 22689029, T. Ishida and No 22300333, R. Ueda) and Scientific Support Programs for Cancer Research (No. 221S0001, T. Ishida) from the Ministry of Education, Culture, Science, Sports, and Technology, Japan; Grants-in-Aid for National Cancer Center Research and Development Fund (No. 21-6-3, T. Ishida) from the Ministry of Health, Labor, and Welfare, Japan.

Conflict of interest

Takashi Ishida has received honoraria for lectures from Kyowa Hakko Kirin. Nagoya City University Graduate School of Medical Sciences has received research grant support from Kyowa Hakko Kirin for works provided by Takashi Ishida. No other conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ishida.

About this article

Cite this article

Ishida, T., Ueda, R. Antibody therapy for Adult T-cell leukemia–lymphoma. Int J Hematol 94, 443–452 (2011). https://doi.org/10.1007/s12185-011-0941-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0941-5

Keywords

Navigation