Skip to main content
Log in

Molecular mechanisms underlying deregulation of C/EBPα in acute myeloid leukemia

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The CEBPA gene encodes a transcription factor protein that is crucial for granulocytic differentiation, regulation of myeloid gene expression and growth arrest. Mutations in one or both alleles of CEBPA are observed in about 10% of patients with acute myeloid leukemia (AML). Moreover, other genetic events associated with AML have been identified to deregulate C/EBPα expression and function at various levels. Recently developed mouse models that accurately mimic the genetic C/EBPα alterations in human AML demonstrate C/EBPα’s gatekeeper function in the control of self-renewal and lineage commitment of hematopoietic stem cells (HSCs). Moreover, these studies indicate that CEBPA mutations affect HSCs in early leukemia development by inducing proliferation and limiting their lineage potential. However, the exact relationship between ‘pre-leukemic’ HCSs and those cells that finally initiate leukemia (leukemia-initiating cells) with disturbed differentiation and aberrant proliferation remains elusive. More research is needed to identify and characterize these functionally distinct populations and the exact role of the different genetic alterations in the process of leukemia initiation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Virchow R. Weisses blut. Frorieps Notizen 1845;36:151–6.

  2. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341(14):1051–62.

    Article  CAS  PubMed  Google Scholar 

  3. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3(2):89–101.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol. 2007;7(2):105–17.

    Article  CAS  PubMed  Google Scholar 

  5. Tenen DG, et al. Transcription factors, normal myeloid development, and leukemia. Blood. 1997;90(2):489–519.

    CAS  PubMed  Google Scholar 

  6. Rosmarin AG, Yang Z, Resendes KK. Transcriptional regulation in myelopoiesis: hematopoietic fate choice. Myeloid differentiation, and leukemogenesis. Exp Hematol. 2005;33(2):131–43.

    Article  CAS  PubMed  Google Scholar 

  7. Pabst T, Mueller BU. Transcriptional dysregulation during myeloid transformation in AML. Oncogene. 2007;26(47):6829–37.

    Article  CAS  PubMed  Google Scholar 

  8. Landschulz WH, et al. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 1988;2(7):786–800.

    Article  CAS  PubMed  Google Scholar 

  9. Akira S, et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990;9(6):1897–906.

    CAS  PubMed  Google Scholar 

  10. Roman C, et al. Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterodimerizes with C/EBP. Genes Dev. 1990;4(8):1404–15.

    Article  CAS  PubMed  Google Scholar 

  11. Cleutjens CB, et al. The human C/EBP delta (CRP3/CELF) gene: structure and chromosomal localization. Genomics. 1993;16(2):520–3.

    Article  CAS  PubMed  Google Scholar 

  12. Antonson P, et al. A novel human CCAAT/enhancer binding protein gene, C/EBPepsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T-cell receptor alpha/delta locus. Genomics. 1996;35(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  13. Park JS, et al. Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene. 1992;116(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  14. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365(Pt 3):561–75.

    CAS  PubMed  Google Scholar 

  15. Miller M, et al. Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein alpha. J Biol Chem. 2003;278(17):15178–84.

    Article  CAS  PubMed  Google Scholar 

  16. Wang ND, et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science. 1995;269(5227):1108–12.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang DE, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA. 1997;94(2):569–74.

    Article  CAS  PubMed  Google Scholar 

  18. Lin FT, et al. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci USA. 1993;90(20):9606–10.

    Article  CAS  PubMed  Google Scholar 

  19. Kaufman RJ. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci. 2004;29(3):152–8.

    Article  CAS  PubMed  Google Scholar 

  20. Calkhoven CF, Muller C, Leutz A. Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev. 2000;14(15):1920–32.

    CAS  PubMed  Google Scholar 

  21. Nerlov C, Ziff EB. CCAAT/enhancer binding protein-alpha amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 1995;14(17):4318–28.

    CAS  PubMed  Google Scholar 

  22. Johansen LM, et al. c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol. 2001;21(11):3789–806.

    Article  CAS  PubMed  Google Scholar 

  23. Porse BT, et al. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell. 2001;107(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  24. Cleaves R, Wang QF, Friedman AD. C/EBPalphap30, a myeloid leukemia oncoprotein, limits G-CSF receptor expression but not terminal granulopoiesis via site-selective inhibition of C/EBP DNA binding. Oncogene. 2004;23(3):716–25.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell. 2001;8(4):817–28.

    Article  CAS  PubMed  Google Scholar 

  26. Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71.

    Article  CAS  PubMed  Google Scholar 

  27. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;1(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang P, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity. 2004;21(6):853–63.

    Article  CAS  PubMed  Google Scholar 

  29. Heath V, et al. C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood. 2004;104(6):1639–47.

    Article  CAS  PubMed  Google Scholar 

  30. Suh HC, et al. C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood. 2006;107(11):4308–16.

    Article  CAS  PubMed  Google Scholar 

  31. Radomska HS, et al. CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol. 1998;18(7):4301–14.

    CAS  PubMed  Google Scholar 

  32. Zhang P, et al. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med. 1998;188(6):1173–84.

    Article  CAS  PubMed  Google Scholar 

  33. Liu F, et al. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996;5(5):491–501.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang P, et al. Induction of granulocytic differentiation by 2 pathways. Blood. 2002;99(12):4406–12.

    Article  CAS  PubMed  Google Scholar 

  35. Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. 1991;251(4991):288–92.

    Article  CAS  PubMed  Google Scholar 

  36. Nerlov C. C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer. 2004;4(5):394–400.

    Article  CAS  PubMed  Google Scholar 

  37. Leroy H, et al. CEBPA point mutations in hematological malignancies. Leukemia. 2005;19(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  38. Preudhomme C, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–23.

    Article  CAS  PubMed  Google Scholar 

  39. Gombart AF, et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood. 2002;99(4):1332–40.

    Article  CAS  PubMed  Google Scholar 

  40. Kaeferstein A, et al. The emergence of a C/EBPalpha mutation in the clonal evolution of MDS towards secondary AML. Leukemia. 2003;17(2):343–9.

    Article  CAS  PubMed  Google Scholar 

  41. Tiesmeier J, et al. Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukaemia. Br J Haematol. 2003;123(3):413–9.

    Article  CAS  PubMed  Google Scholar 

  42. Frohling S, et al. Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chromosom Cancer. 2005;42(4):427–32.

    Article  PubMed  Google Scholar 

  43. Snaddon J, et al. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosom Cancer. 2003;37(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  44. Barjesteh van Waalwijk van Doorn-Khosrovani S et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J. 2003;4(1):31–40.

  45. Frohling S, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22(4):624–33.

    Article  PubMed  Google Scholar 

  46. Bienz M, et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11(4):1416–24.

    Article  CAS  PubMed  Google Scholar 

  47. Pabst T, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001;27(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  48. Haferlach T. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology. 2008;2008(1):400–11.

    Article  Google Scholar 

  49. Pabst T, et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med. 2001;7(4):444–51.

    Article  CAS  PubMed  Google Scholar 

  50. Heidenreich O, et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood. 2003;101(8):3157–63.

    Article  CAS  PubMed  Google Scholar 

  51. Lin LI, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res. 2005;11(4):1372–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kirstetter P, et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell. 2008;13(4):299–310.

    Article  CAS  PubMed  Google Scholar 

  53. Shih LY, et al. AML patients with CEBPalpha mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia. 2006;20(4):604–9.

    Article  CAS  PubMed  Google Scholar 

  54. Valk PJ, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28.

    Article  CAS  PubMed  Google Scholar 

  55. Wouters BJ, et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood. 2007;110(10):3706–14.

    Article  CAS  PubMed  Google Scholar 

  56. Pabst T, et al. Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer. 2009;100(8):1343–6.

    Article  CAS  PubMed  Google Scholar 

  57. Wouters BJ, et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088–91.

    Article  CAS  PubMed  Google Scholar 

  58. Schlenk RF, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18.

    Article  CAS  PubMed  Google Scholar 

  59. Sellick GS, et al. Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia. Leukemia. 2005;19(7):1276–8.

    Article  CAS  PubMed  Google Scholar 

  60. Pabst T, et al. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol. 2008;26(31):5088–93.

    Article  CAS  PubMed  Google Scholar 

  61. Smith ML, et al. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004;351(23):2403–7.

    Article  CAS  PubMed  Google Scholar 

  62. Schwieger M, et al. A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood. 2004;103(7):2744–52.

    Article  CAS  PubMed  Google Scholar 

  63. Cammenga J, et al. Induction of C/EBPalpha activity alters gene expression and differentiation of human CD34+ cells. Blood. 2003;101(6):2206–14.

    Article  CAS  PubMed  Google Scholar 

  64. Geletu M, et al. Target proteins of C/EBPalphap30 in AML: C/EBPalphap30 enhances sumoylation of C/EBPalphap42 via up-regulation of Ubc9. Blood. 2007;110(9):3301–9.

    Article  CAS  PubMed  Google Scholar 

  65. Wagner K, et al. Absence of the transcription factor CCAAT enhancer binding protein alpha results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci USA. 2006;103(16):6338–43.

    Article  CAS  PubMed  Google Scholar 

  66. Porse BT, et al. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med. 2005;202(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  67. Bereshchenko O, et al. Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell. 2009;16(5):390–400.

    Article  CAS  PubMed  Google Scholar 

  68. Kelly LM, et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–8.

    Article  CAS  PubMed  Google Scholar 

  69. Cammenga J. Gatekeeper pathways and cellular background in the pathogenesis and therapy of AML. Leukemia. 2005;19(10):1719–28.

    Article  CAS  PubMed  Google Scholar 

  70. Shih LY, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92.

    Article  CAS  PubMed  Google Scholar 

  71. Haferlach T, et al. Genetic classification of acute myeloid leukemia (AML). Ann Hematol. 2004;83(Suppl 1):S97–100.

    PubMed  Google Scholar 

  72. Skokowa J, et al. LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med. 2006;12(10):1191–7.

    Article  CAS  PubMed  Google Scholar 

  73. Helbling D, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA. 2004;101(36):13312–7.

    Article  CAS  PubMed  Google Scholar 

  74. Helbling D, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood. 2005;106(4):1369–75.

    Article  CAS  PubMed  Google Scholar 

  75. Chang JS, et al. High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood. 2007;110(3):994–1003.

    Article  CAS  PubMed  Google Scholar 

  76. Perrotti D, et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  77. Scheuner D, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7(6):1165–76.

    Article  CAS  PubMed  Google Scholar 

  78. Assouline S, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood. 2009;114(2):257–60.

    Article  CAS  PubMed  Google Scholar 

  79. Koschmieder S, et al. CDDO induces granulocytic differentiation of myeloid leukemic blasts through translational up-regulation of p42 CCAAT enhancer binding protein alpha. Blood. 2007;110(10):3695–705.

    Article  CAS  PubMed  Google Scholar 

  80. Keeshan K, et al. Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell. 2006;10(5):401–11.

    Article  CAS  PubMed  Google Scholar 

  81. Ross SE, et al. Phosphorylation of C/EBPalpha inhibits granulopoiesis. Mol Cell Biol. 2004;24(2):675–86.

    Article  CAS  PubMed  Google Scholar 

  82. Radomska HS, et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med. 2006;203(2):371–81.

    Article  CAS  PubMed  Google Scholar 

  83. Trivedi AK, et al. Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination. Oncogene. 2007;26(12):1789–801.

    Article  CAS  PubMed  Google Scholar 

  84. Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  85. Truong BT, et al. CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood. 2003;101(3):1141–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ferrari-Amorotti G, et al. Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha. Blood. 2006;108(4):1353–62.

    Article  CAS  PubMed  Google Scholar 

  87. Schepers H, et al. Reintroduction of C/EBPalpha in leukemic CD34+ stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood. 2007;110(4):1317–25.

    Article  CAS  PubMed  Google Scholar 

  88. Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  89. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Cammenga.

About this article

Cite this article

Reckzeh, K., Cammenga, J. Molecular mechanisms underlying deregulation of C/EBPα in acute myeloid leukemia. Int J Hematol 91, 557–568 (2010). https://doi.org/10.1007/s12185-010-0573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0573-1

Keywords

Navigation