Skip to main content
Log in

Type 2 Diabetes and Genetics, 2010: Translating Knowledge into Understanding

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is epidemic, but much has been learned about its molecular etiology in recent years. In this review, we present the substantial evidence for the contribution of genetic variation to the development of T2D that has accumulated over the past decade, emphasizing the respective contribution of candidate gene, linkage analysis, and genome-wide association approaches. We then discuss how this emerging knowledge is informing and reshaping the understanding of T2D biology and how, in the near term, genetics may be used clinically to identify individuals who are at risk of disease or who may derive benefit from specific treatment modalities. In the final section, we address common questions posed to T2D geneticists and highlight the future approaches that will continue to improve our understanding of T2D genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. DIABETES—Successes and Opportunities for Population-Based Prevention and Control: At a Glance 2009 in Prevention and Health Promotion [online]. Available at http://www.cdc.gov/chronicdisease/resources/publications/aag/ddt.htm. Accessed June 13, 2010.

  2. Hogan P, Dall T, Nikolov P: Economic costs of diabetes in the US in 2002. Diabetes Care 2003, 26:917–932.

    Article  PubMed  Google Scholar 

  3. American Diabetes Association: Economic costs of diabetes in the U.S in 2007. Diabetes Care 2008, 31:596–615.

    Google Scholar 

  4. Pelletier EM, Smith PJ, Boye KS, et al.: Direct medical costs for type 2 diabetes mellitus complications in the US commercial payer setting: a resource for economic research. Appl Health Econ Health Policy 2008, 6:103–112.

    PubMed  Google Scholar 

  5. Moore AF, Florez JC: Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy. Annu Rev Med 2008, 59:95–111.

    Article  CAS  PubMed  Google Scholar 

  6. Barnett AH, Eff C, Leslie DG, et al.: Diabetes in identical twins. A study of 200 pairs. Diabetologia 1981, 20:87–93.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh S, Schork NJ: Genetic analysis of NIDDM. The study of quantitative traits. Diabetes 1996, 45:1–14.

    CAS  Google Scholar 

  8. Kahn CR, Vicent D, Doria A: Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med 1996, 47:509–531.

    Article  CAS  PubMed  Google Scholar 

  9. Rich SS: Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990, 39:1315–1319.

    CAS  Google Scholar 

  10. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H: Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia 1999, 42:139–145.

    Article  CAS  PubMed  Google Scholar 

  11. Bell GI, Polonsky KS: Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 2001, 414:788–791.

    Article  CAS  PubMed  Google Scholar 

  12. Fajans SS, Bell GI, Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001, 345:971–980.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue H, Tanizawa Y, Wasson J, et al., A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998, 20:143–148.

    Article  CAS  PubMed  Google Scholar 

  14. Babenko AP, Polak M, Cave H, et al., Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med, 2006, 355:456–466.

    Article  CAS  PubMed  Google Scholar 

  15. Gloyn AL, Pearson ER, Antcliff JF, et al., Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004, 350:1838–1849.

    Article  CAS  PubMed  Google Scholar 

  16. Altshuler D, Hirschorn JN, Klannemark M, et al.: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.

    Article  CAS  PubMed  Google Scholar 

  17. Gloyn AL, Weedon MN, Owen KR, et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003, 52:568–572.

    Google Scholar 

  18. Barroso I, Luan J, Middelberg RP, et al.: Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 2003, 1:E20.

    Article  PubMed  Google Scholar 

  19. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323.

    Article  CAS  PubMed  Google Scholar 

  20. Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.

    Article  CAS  PubMed  Google Scholar 

  21. Chimienti F, Devergnas S, Favier A, Seve M: Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004, 53:2330–2337.

    Article  CAS  PubMed  Google Scholar 

  22. Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS: Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004, 131:797–806.

    Article  CAS  PubMed  Google Scholar 

  23. Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007. 316(5829): p. 1331-6.

    Article  CAS  PubMed  Google Scholar 

  24. Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345.

    Article  CAS  PubMed  Google Scholar 

  25. Zeggini E, Weedon MN, Lindgren CM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1341.

    Article  CAS  PubMed  Google Scholar 

  26. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al.: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007, 39:770–775.

    Article  CAS  PubMed  Google Scholar 

  27. Zeggini E, Scott LJ, Voight BF, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008, 40:638–645.

    Article  CAS  PubMed  Google Scholar 

  28. • Voight BF, Scott LJ, Steinthorsdottir V, et al.: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010 (in press). The largest T2D GWAS meta-analysis to date, DIAGRAM + will be published this year and will confirm recently detected risk alleles and identify novel risk loci. Many of these newly identified polymorphisms are associated with indicators of reduced pancreatic beta-cell function, impaired insulin action, and other traits associated with dysmetabolism, increasing the biological relevance of the DIAGRAM + findings and raising new hypotheses regarding disease mechanism.

  29. Unoki H, Takahashi A, Kawaguchi T, et al.: SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 2008, 40:1098–1102.

    Article  CAS  PubMed  Google Scholar 

  30. Yasuda K, Miyake K, Horikawa Y, et al.: Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008, 40:1092–1097.

    Article  CAS  PubMed  Google Scholar 

  31. • Dupuis J, Langenberg C, Prokopenko I, et al. : New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010, 42:105–116. The MAGIC investigators published this study that which examined the association between genetic variants and quantitative traits related to T2D, such as fasting glucose and insulin. This led to the identification of loci associated with variation in fasting glucose and to two novel loci associated with measures of insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  32. Petersen KF, Shulman GI: Etiology of insulin resistance. Am J Med 2006, 119(5 Suppl 1):S10–16.

    Article  PubMed  Google Scholar 

  33. Panhuysen CI, Cupples LA, Wilson PW, et al.: A genome scan for loci linked to quantitative insulin traits in persons without diabetes: the Framingham Offspring Study. Diabetologia 2003, 46:579–587.

    CAS  PubMed  Google Scholar 

  34. Alexander CM, Landsman PB, Teutsch SM, et al.: NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003, 52:1210–1214.

    Article  CAS  PubMed  Google Scholar 

  35. Rutter MK, Meigs JB, Sullivan LM, et al.: Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes 2005, 54:3252–3257.

    Article  CAS  PubMed  Google Scholar 

  36. Walford GA, Greene T, Neale B, et al.: Common genetic variants influence different phases of the progression from normal fasting glucose to type 2 diabetes. Abstract presented at the American Diabetes Association Scientific Sessions. Orlando, FL; June 24-29, 2010.

  37. Helgadottir A, Thorleifsson G, Manolescu A, et al.: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316:1491–1493.

    Article  CAS  PubMed  Google Scholar 

  38. McPherson R, Pertsemlidis A, Kavaslar N, et al.: A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316:1488–14891.

    Article  CAS  PubMed  Google Scholar 

  39. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.

  40. Kathiresan S, Willer CJ, Peloso GM, et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009, 41:56–65.

    Article  CAS  PubMed  Google Scholar 

  41. Chasman DI, Pare G, Zee RY, et al.: Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circ Cardiovasc Genet 2008, 1:21–30.

    Article  CAS  PubMed  Google Scholar 

  42. Gudmundsson J, Sulem P, Steinthorsdottir V, et al.: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007, 39:977–983.

    Article  CAS  PubMed  Google Scholar 

  43. Folsom AR, Pankow JS, Peacock JM, et al.: Variation in TCF7L2 and increased risk of colon cancer: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2008, 31:905–909.

    Article  PubMed  Google Scholar 

  44. • Meigs JB, Shrader P, Sullivan LM, et al.: Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008, 359:2208–2219. This study utilized available risk alleles to predict future risk of type 2 diabetes in the offspring cohort of the Framingham Heart Study. Adding the genotype score into any of these models did not result in significant overall improvement of the models’ predictive value.

    Article  CAS  PubMed  Google Scholar 

  45. • Lyssenko V, Jonsson A, Almgren P, et al.: Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008, 359:2220–2232. In this study, published concurrently with Meigs et al. [44•], available risk alleles were used predict future risk of T2D in a mixed Swedish and Finnish population. Here, inclusion of the genetic risk factors with a clinical model of risk prediction resulted in a small improvement in the model.

    Article  CAS  PubMed  Google Scholar 

  46. Pearson ER, Fletchtner I, Njolstad PR, et al.: Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006, 355:467–477.

    Article  CAS  PubMed  Google Scholar 

  47. Pearson ER, Starkey BJ, Powell RJ, et al.: Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003, 362:1275–1281.

    Article  CAS  PubMed  Google Scholar 

  48. Nathan DM, Buse JB, Davidson MB, et al.: Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009, 32:193–203.

    Article  CAS  PubMed  Google Scholar 

  49. Feng Y, Mao G, Ren X, et al.: Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 2008, 31:1939–1944.

    Article  CAS  PubMed  Google Scholar 

  50. Pearson ER, Donnelly LA, Kimber C, et al.: Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 2007, 56:2178–2182.

    Article  CAS  PubMed  Google Scholar 

  51. Kimber CH, Doney AS, Pearson ER, et al.: TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia 2007, 50:1186–1191.

    Article  CAS  PubMed  Google Scholar 

  52. Kathiresan S, Melander O, Guiducci C, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197.

    Article  CAS  PubMed  Google Scholar 

  53. Pe'er I, de Bakker PI, Maller J, et al.: Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 2006, 38:663–667.

    Article  PubMed  Google Scholar 

  54. Bochukova EG, Huan N, Keogh J, et al.: Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463:666–670.

  55. Walters RG, Jacquemont S, Valsesia A, et al.: A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463:671–675.

  56. Sandhu MS, Weedon MN, Fawcett KA, et al.: Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007, 39:951–953.

    Article  CAS  PubMed  Google Scholar 

  57. Winckler W, Weedon MN, Graham RR, et al.: Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 2007, 56:685–693.

    Article  CAS  PubMed  Google Scholar 

  58. Orho-Melander M, Melaner O, Guiducci C, et al.: Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 2008, 57:3112–3121.

    Article  CAS  PubMed  Google Scholar 

  59. Prokopenko I, Langenberg C, Florez JC, et al.: Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009, 41:77–81.

    Article  CAS  PubMed  Google Scholar 

  60. Rung J, Cauchi S, Albrechtsen A, et al.: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009, 41:1110–1115.

    Article  CAS  PubMed  Google Scholar 

  61. Bouatia-Naji N, Rocheleau G, Van Lommel L, et al.: A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 2008, 320:1085–1088.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Dr. Florez has worked as a consultant for Merck, XOMA, and Daiichi-Sankyo. He has received honoraria from Pfizer and Alnylam Pharmaceuticals. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose C. Florez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walford, G.A., Florez, J.C. Type 2 Diabetes and Genetics, 2010: Translating Knowledge into Understanding. Curr Cardio Risk Rep 4, 437–445 (2010). https://doi.org/10.1007/s12170-010-0129-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-010-0129-1

Keywords

Navigation